Evaluate
\frac{\sqrt{6}}{3}\approx 0.816496581
Share
Copied to clipboard
\frac{\sqrt{8\times 3}}{\sqrt{2\times 3}}\times \frac{1}{\sqrt{2\times 3}}
Calculate 2 to the power of 3 and get 8.
\frac{\sqrt{24}}{\sqrt{2\times 3}}\times \frac{1}{\sqrt{2\times 3}}
Multiply 8 and 3 to get 24.
\frac{2\sqrt{6}}{\sqrt{2\times 3}}\times \frac{1}{\sqrt{2\times 3}}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{2\sqrt{6}}{\sqrt{6}}\times \frac{1}{\sqrt{2\times 3}}
Multiply 2 and 3 to get 6.
\frac{2\sqrt{6}\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\times \frac{1}{\sqrt{2\times 3}}
Rationalize the denominator of \frac{2\sqrt{6}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{2\sqrt{6}\sqrt{6}}{6}\times \frac{1}{\sqrt{2\times 3}}
The square of \sqrt{6} is 6.
\frac{2\times 6}{6}\times \frac{1}{\sqrt{2\times 3}}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{12}{6}\times \frac{1}{\sqrt{2\times 3}}
Multiply 2 and 6 to get 12.
2\times \frac{1}{\sqrt{2\times 3}}
Divide 12 by 6 to get 2.
2\times \frac{1}{\sqrt{6}}
Multiply 2 and 3 to get 6.
2\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
2\times \frac{\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{\sqrt{6}}{3}
Cancel out 6, the greatest common factor in 2 and 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}