Solve for x
x = \frac{2 \sqrt{3}}{3} \approx 1.154700538
Graph
Share
Copied to clipboard
\left(\sqrt{2^{2}+x^{2}}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
\left(\sqrt{4+x^{2}}\right)^{2}=\left(2x\right)^{2}
Calculate 2 to the power of 2 and get 4.
4+x^{2}=\left(2x\right)^{2}
Calculate \sqrt{4+x^{2}} to the power of 2 and get 4+x^{2}.
4+x^{2}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
4+x^{2}=4x^{2}
Calculate 2 to the power of 2 and get 4.
4+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
4-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=-4
Subtract 4 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-4}{-3}
Divide both sides by -3.
x^{2}=\frac{4}{3}
Fraction \frac{-4}{-3} can be simplified to \frac{4}{3} by removing the negative sign from both the numerator and the denominator.
x=\frac{2\sqrt{3}}{3} x=-\frac{2\sqrt{3}}{3}
Take the square root of both sides of the equation.
\sqrt{2^{2}+\left(\frac{2\sqrt{3}}{3}\right)^{2}}=2\times \frac{2\sqrt{3}}{3}
Substitute \frac{2\sqrt{3}}{3} for x in the equation \sqrt{2^{2}+x^{2}}=2x.
\frac{4}{3}\times 3^{\frac{1}{2}}=\frac{4}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{2\sqrt{3}}{3} satisfies the equation.
\sqrt{2^{2}+\left(-\frac{2\sqrt{3}}{3}\right)^{2}}=2\left(-\frac{2\sqrt{3}}{3}\right)
Substitute -\frac{2\sqrt{3}}{3} for x in the equation \sqrt{2^{2}+x^{2}}=2x.
\frac{4}{3}\times 3^{\frac{1}{2}}=-\frac{4}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=-\frac{2\sqrt{3}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{2\sqrt{3}}{3}
Equation \sqrt{x^{2}+4}=2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}