\sqrt{ { \left(x-4 \right) }^{ 2 } + { 3 }^{ 2 } } =0.8(9-x
Solve for x
x = \frac{5 \sqrt{319} - 44}{9} \approx 5.033650611
x=\frac{-5\sqrt{319}-44}{9}\approx -14.811428389
Graph
Share
Copied to clipboard
\left(\sqrt{\left(x-4\right)^{2}+3^{2}}\right)^{2}=\left(0.8\left(9-x\right)\right)^{2}
Square both sides of the equation.
\left(\sqrt{x^{2}-8x+16+3^{2}}\right)^{2}=\left(0.8\left(9-x\right)\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-4\right)^{2}.
\left(\sqrt{x^{2}-8x+16+9}\right)^{2}=\left(0.8\left(9-x\right)\right)^{2}
Calculate 3 to the power of 2 and get 9.
\left(\sqrt{x^{2}-8x+25}\right)^{2}=\left(0.8\left(9-x\right)\right)^{2}
Add 16 and 9 to get 25.
x^{2}-8x+25=\left(0.8\left(9-x\right)\right)^{2}
Calculate \sqrt{x^{2}-8x+25} to the power of 2 and get x^{2}-8x+25.
x^{2}-8x+25=\left(7.2-0.8x\right)^{2}
Use the distributive property to multiply 0.8 by 9-x.
x^{2}-8x+25=51.84-11.52x+0.64x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7.2-0.8x\right)^{2}.
x^{2}-8x+25-51.84=-11.52x+0.64x^{2}
Subtract 51.84 from both sides.
x^{2}-8x-26.84=-11.52x+0.64x^{2}
Subtract 51.84 from 25 to get -26.84.
x^{2}-8x-26.84+11.52x=0.64x^{2}
Add 11.52x to both sides.
x^{2}+3.52x-26.84=0.64x^{2}
Combine -8x and 11.52x to get 3.52x.
x^{2}+3.52x-26.84-0.64x^{2}=0
Subtract 0.64x^{2} from both sides.
0.36x^{2}+3.52x-26.84=0
Combine x^{2} and -0.64x^{2} to get 0.36x^{2}.
x=\frac{-3.52±\sqrt{3.52^{2}-4\times 0.36\left(-26.84\right)}}{2\times 0.36}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.36 for a, 3.52 for b, and -26.84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3.52±\sqrt{12.3904-4\times 0.36\left(-26.84\right)}}{2\times 0.36}
Square 3.52 by squaring both the numerator and the denominator of the fraction.
x=\frac{-3.52±\sqrt{12.3904-1.44\left(-26.84\right)}}{2\times 0.36}
Multiply -4 times 0.36.
x=\frac{-3.52±\sqrt{\frac{7744+24156}{625}}}{2\times 0.36}
Multiply -1.44 times -26.84 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-3.52±\sqrt{51.04}}{2\times 0.36}
Add 12.3904 to 38.6496 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-3.52±\frac{2\sqrt{319}}{5}}{2\times 0.36}
Take the square root of 51.04.
x=\frac{-3.52±\frac{2\sqrt{319}}{5}}{0.72}
Multiply 2 times 0.36.
x=\frac{\frac{2\sqrt{319}}{5}-\frac{88}{25}}{0.72}
Now solve the equation x=\frac{-3.52±\frac{2\sqrt{319}}{5}}{0.72} when ± is plus. Add -3.52 to \frac{2\sqrt{319}}{5}.
x=\frac{5\sqrt{319}-44}{9}
Divide -\frac{88}{25}+\frac{2\sqrt{319}}{5} by 0.72 by multiplying -\frac{88}{25}+\frac{2\sqrt{319}}{5} by the reciprocal of 0.72.
x=\frac{-\frac{2\sqrt{319}}{5}-\frac{88}{25}}{0.72}
Now solve the equation x=\frac{-3.52±\frac{2\sqrt{319}}{5}}{0.72} when ± is minus. Subtract \frac{2\sqrt{319}}{5} from -3.52.
x=\frac{-5\sqrt{319}-44}{9}
Divide -\frac{88}{25}-\frac{2\sqrt{319}}{5} by 0.72 by multiplying -\frac{88}{25}-\frac{2\sqrt{319}}{5} by the reciprocal of 0.72.
x=\frac{5\sqrt{319}-44}{9} x=\frac{-5\sqrt{319}-44}{9}
The equation is now solved.
\sqrt{\left(\frac{5\sqrt{319}-44}{9}-4\right)^{2}+3^{2}}=0.8\left(9-\frac{5\sqrt{319}-44}{9}\right)
Substitute \frac{5\sqrt{319}-44}{9} for x in the equation \sqrt{\left(x-4\right)^{2}+3^{2}}=0.8\left(9-x\right).
\frac{100}{9}-\frac{4}{9}\times 319^{\frac{1}{2}}=\frac{100}{9}-\frac{4}{9}\times 319^{\frac{1}{2}}
Simplify. The value x=\frac{5\sqrt{319}-44}{9} satisfies the equation.
\sqrt{\left(\frac{-5\sqrt{319}-44}{9}-4\right)^{2}+3^{2}}=0.8\left(9-\frac{-5\sqrt{319}-44}{9}\right)
Substitute \frac{-5\sqrt{319}-44}{9} for x in the equation \sqrt{\left(x-4\right)^{2}+3^{2}}=0.8\left(9-x\right).
\frac{100}{9}+\frac{4}{9}\times 319^{\frac{1}{2}}=\frac{100}{9}+\frac{4}{9}\times 319^{\frac{1}{2}}
Simplify. The value x=\frac{-5\sqrt{319}-44}{9} satisfies the equation.
x=\frac{5\sqrt{319}-44}{9} x=\frac{-5\sqrt{319}-44}{9}
List all solutions of \sqrt{\left(x-4\right)^{2}+9}=\frac{4\left(9-x\right)}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}