Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{\left(x-2\right)^{2}}=6-3x
Subtract 3x from both sides of the equation.
\sqrt{x^{2}-4x+4}=6-3x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\left(\sqrt{x^{2}-4x+4}\right)^{2}=\left(6-3x\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(6-3x\right)^{2}
Calculate \sqrt{x^{2}-4x+4} to the power of 2 and get x^{2}-4x+4.
x^{2}-4x+4=36-36x+9x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-3x\right)^{2}.
x^{2}-4x+4-36=-36x+9x^{2}
Subtract 36 from both sides.
x^{2}-4x-32=-36x+9x^{2}
Subtract 36 from 4 to get -32.
x^{2}-4x-32+36x=9x^{2}
Add 36x to both sides.
x^{2}+32x-32=9x^{2}
Combine -4x and 36x to get 32x.
x^{2}+32x-32-9x^{2}=0
Subtract 9x^{2} from both sides.
-8x^{2}+32x-32=0
Combine x^{2} and -9x^{2} to get -8x^{2}.
-x^{2}+4x-4=0
Divide both sides by 8.
a+b=4 ab=-\left(-4\right)=4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,4 2,2
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 4.
1+4=5 2+2=4
Calculate the sum for each pair.
a=2 b=2
The solution is the pair that gives sum 4.
\left(-x^{2}+2x\right)+\left(2x-4\right)
Rewrite -x^{2}+4x-4 as \left(-x^{2}+2x\right)+\left(2x-4\right).
-x\left(x-2\right)+2\left(x-2\right)
Factor out -x in the first and 2 in the second group.
\left(x-2\right)\left(-x+2\right)
Factor out common term x-2 by using distributive property.
x=2 x=2
To find equation solutions, solve x-2=0 and -x+2=0.
\sqrt{\left(2-2\right)^{2}}+3\times 2=6
Substitute 2 for x in the equation \sqrt{\left(x-2\right)^{2}}+3x=6.
6=6
Simplify. The value x=2 satisfies the equation.
\sqrt{\left(2-2\right)^{2}}+3\times 2=6
Substitute 2 for x in the equation \sqrt{\left(x-2\right)^{2}}+3x=6.
6=6
Simplify. The value x=2 satisfies the equation.
x=2 x=2
List all solutions of \sqrt{x^{2}-4x+4}=6-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}