Solve for x
x=3
x=\frac{1}{2}=0.5
Graph
Quiz
Algebra
\sqrt{ { \left(2x-1 \right) }^{ 2 } } \left( 3-x \right) = \left( 1-2x \right) \sqrt{ x-x }
Share
Copied to clipboard
\left(\sqrt{\left(2x-1\right)^{2}}\left(3-x\right)\right)^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{4x^{2}-4x+1}\left(3-x\right)\right)^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
\left(3\sqrt{4x^{2}-4x+1}-\sqrt{4x^{2}-4x+1}x\right)^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use the distributive property to multiply \sqrt{4x^{2}-4x+1} by 3-x.
9\left(\sqrt{4x^{2}-4x+1}\right)^{2}-6\sqrt{4x^{2}-4x+1}\sqrt{4x^{2}-4x+1}x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{4x^{2}-4x+1}-\sqrt{4x^{2}-4x+1}x\right)^{2}.
9\left(\sqrt{4x^{2}-4x+1}\right)^{2}-6\left(\sqrt{4x^{2}-4x+1}\right)^{2}x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Multiply \sqrt{4x^{2}-4x+1} and \sqrt{4x^{2}-4x+1} to get \left(\sqrt{4x^{2}-4x+1}\right)^{2}.
9\left(4x^{2}-4x+1\right)-6\left(\sqrt{4x^{2}-4x+1}\right)^{2}x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Calculate \sqrt{4x^{2}-4x+1} to the power of 2 and get 4x^{2}-4x+1.
36x^{2}-36x+9-6\left(\sqrt{4x^{2}-4x+1}\right)^{2}x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
36x^{2}-36x+9-6\left(4x^{2}-4x+1\right)x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Calculate \sqrt{4x^{2}-4x+1} to the power of 2 and get 4x^{2}-4x+1.
36x^{2}-36x+9+\left(-24x^{2}+24x-6\right)x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use the distributive property to multiply -6 by 4x^{2}-4x+1.
36x^{2}-36x+9-24x^{3}+24x^{2}-6x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use the distributive property to multiply -24x^{2}+24x-6 by x.
60x^{2}-36x+9-24x^{3}-6x+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Combine 36x^{2} and 24x^{2} to get 60x^{2}.
60x^{2}-42x+9-24x^{3}+\left(\sqrt{4x^{2}-4x+1}\right)^{2}x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Combine -36x and -6x to get -42x.
60x^{2}-42x+9-24x^{3}+\left(4x^{2}-4x+1\right)x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Calculate \sqrt{4x^{2}-4x+1} to the power of 2 and get 4x^{2}-4x+1.
60x^{2}-42x+9-24x^{3}+4x^{4}-4x^{3}+x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Use the distributive property to multiply 4x^{2}-4x+1 by x^{2}.
60x^{2}-42x+9-28x^{3}+4x^{4}+x^{2}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Combine -24x^{3} and -4x^{3} to get -28x^{3}.
61x^{2}-42x+9-28x^{3}+4x^{4}=\left(\left(1-2x\right)\sqrt{x-x}\right)^{2}
Combine 60x^{2} and x^{2} to get 61x^{2}.
61x^{2}-42x+9-28x^{3}+4x^{4}=\left(\left(1-2x\right)\sqrt{0}\right)^{2}
Combine x and -x to get 0.
61x^{2}-42x+9-28x^{3}+4x^{4}=\left(\left(1-2x\right)\times 0\right)^{2}
Calculate the square root of 0 and get 0.
61x^{2}-42x+9-28x^{3}+4x^{4}=0^{2}
Anything times zero gives zero.
61x^{2}-42x+9-28x^{3}+4x^{4}=0
Calculate 0 to the power of 2 and get 0.
4x^{4}-28x^{3}+61x^{2}-42x+9=0
Rearrange the equation to put it in standard form. Place the terms in order from highest to lowest power.
±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 9 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{3}-16x^{2}+13x-3=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 4x^{4}-28x^{3}+61x^{2}-42x+9 by x-3 to get 4x^{3}-16x^{2}+13x-3. Solve the equation where the result equals to 0.
±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -3 and q divides the leading coefficient 4. List all candidates \frac{p}{q}.
x=3
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}-4x+1=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 4x^{3}-16x^{2}+13x-3 by x-3 to get 4x^{2}-4x+1. Solve the equation where the result equals to 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\times 1}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -4 for b, and 1 for c in the quadratic formula.
x=\frac{4±0}{8}
Do the calculations.
x=\frac{1}{2}
Solutions are the same.
x=3 x=\frac{1}{2}
List all found solutions.
\sqrt{\left(2\times 3-1\right)^{2}}\left(3-3\right)=\left(1-2\times 3\right)\sqrt{3-3}
Substitute 3 for x in the equation \sqrt{\left(2x-1\right)^{2}}\left(3-x\right)=\left(1-2x\right)\sqrt{x-x}.
0=0
Simplify. The value x=3 satisfies the equation.
\sqrt{\left(2\times \frac{1}{2}-1\right)^{2}}\left(3-\frac{1}{2}\right)=\left(1-2\times \frac{1}{2}\right)\sqrt{\frac{1}{2}-\frac{1}{2}}
Substitute \frac{1}{2} for x in the equation \sqrt{\left(2x-1\right)^{2}}\left(3-x\right)=\left(1-2x\right)\sqrt{x-x}.
0=0
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=3 x=\frac{1}{2}
List all solutions of \left(3-x\right)\sqrt{\left(2x-1\right)^{2}}=\sqrt{x-x}\left(1-2x\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}