Solve for x
x = \frac{14}{3} = 4\frac{2}{3} \approx 4.666666667
Graph
Share
Copied to clipboard
\left(\sqrt{\left(12+x\right)^{2}-16^{2}}\right)^{2}=x^{2}
Square both sides of the equation.
\left(\sqrt{144+24x+x^{2}-16^{2}}\right)^{2}=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12+x\right)^{2}.
\left(\sqrt{144+24x+x^{2}-256}\right)^{2}=x^{2}
Calculate 16 to the power of 2 and get 256.
\left(\sqrt{-112+24x+x^{2}}\right)^{2}=x^{2}
Subtract 256 from 144 to get -112.
-112+24x+x^{2}=x^{2}
Calculate \sqrt{-112+24x+x^{2}} to the power of 2 and get -112+24x+x^{2}.
-112+24x+x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-112+24x=0
Combine x^{2} and -x^{2} to get 0.
24x=112
Add 112 to both sides. Anything plus zero gives itself.
x=\frac{112}{24}
Divide both sides by 24.
x=\frac{14}{3}
Reduce the fraction \frac{112}{24} to lowest terms by extracting and canceling out 8.
\sqrt{\left(12+\frac{14}{3}\right)^{2}-16^{2}}=\frac{14}{3}
Substitute \frac{14}{3} for x in the equation \sqrt{\left(12+x\right)^{2}-16^{2}}=x.
\frac{14}{3}=\frac{14}{3}
Simplify. The value x=\frac{14}{3} satisfies the equation.
x=\frac{14}{3}
Equation \sqrt{\left(x+12\right)^{2}-256}=x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}