Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{\left(12+x\right)^{2}-16^{2}}\right)^{2}=x^{2}
Square both sides of the equation.
\left(\sqrt{144+24x+x^{2}-16^{2}}\right)^{2}=x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(12+x\right)^{2}.
\left(\sqrt{144+24x+x^{2}-256}\right)^{2}=x^{2}
Calculate 16 to the power of 2 and get 256.
\left(\sqrt{-112+24x+x^{2}}\right)^{2}=x^{2}
Subtract 256 from 144 to get -112.
-112+24x+x^{2}=x^{2}
Calculate \sqrt{-112+24x+x^{2}} to the power of 2 and get -112+24x+x^{2}.
-112+24x+x^{2}-x^{2}=0
Subtract x^{2} from both sides.
-112+24x=0
Combine x^{2} and -x^{2} to get 0.
24x=112
Add 112 to both sides. Anything plus zero gives itself.
x=\frac{112}{24}
Divide both sides by 24.
x=\frac{14}{3}
Reduce the fraction \frac{112}{24} to lowest terms by extracting and canceling out 8.
\sqrt{\left(12+\frac{14}{3}\right)^{2}-16^{2}}=\frac{14}{3}
Substitute \frac{14}{3} for x in the equation \sqrt{\left(12+x\right)^{2}-16^{2}}=x.
\frac{14}{3}=\frac{14}{3}
Simplify. The value x=\frac{14}{3} satisfies the equation.
x=\frac{14}{3}
Equation \sqrt{\left(x+12\right)^{2}-256}=x has a unique solution.