Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for y (complex solution)
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{\frac{1}{z}x}+\sqrt{9y}-\sqrt{9y}=\sqrt{2}-\sqrt{9y}
Subtract \sqrt{9y} from both sides of the equation.
\sqrt{\frac{1}{z}x}=\sqrt{2}-\sqrt{9y}
Subtracting \sqrt{9y} from itself leaves 0.
\sqrt{\frac{1}{z}x}=-3\sqrt{y}+\sqrt{2}
Subtract \sqrt{9y} from \sqrt{2}.
\frac{1}{z}x=\left(-3\sqrt{y}+\sqrt{2}\right)^{2}
Square both sides of the equation.
\frac{\frac{1}{z}xz}{1}=\frac{\left(-3\sqrt{y}+\sqrt{2}\right)^{2}z}{1}
Divide both sides by z^{-1}.
x=\frac{\left(-3\sqrt{y}+\sqrt{2}\right)^{2}z}{1}
Dividing by z^{-1} undoes the multiplication by z^{-1}.
x=z\left(-3\sqrt{y}+\sqrt{2}\right)^{2}
Divide \left(\sqrt{2}-3\sqrt{y}\right)^{2} by z^{-1}.
\sqrt{9y}+\sqrt{\frac{x}{z}}-\sqrt{\frac{x}{z}}=\sqrt{2}-\sqrt{\frac{x}{z}}
Subtract \sqrt{xz^{-1}} from both sides of the equation.
\sqrt{9y}=\sqrt{2}-\sqrt{\frac{x}{z}}
Subtracting \sqrt{xz^{-1}} from itself leaves 0.
\sqrt{9y}=-\sqrt{\frac{x}{z}}+\sqrt{2}
Subtract \sqrt{xz^{-1}} from \sqrt{2}.
9y=\left(-\sqrt{\frac{x}{z}}+\sqrt{2}\right)^{2}
Square both sides of the equation.
\frac{9y}{9}=\frac{\left(-\sqrt{\frac{x}{z}}+\sqrt{2}\right)^{2}}{9}
Divide both sides by 9.
y=\frac{\left(-\sqrt{\frac{x}{z}}+\sqrt{2}\right)^{2}}{9}
Dividing by 9 undoes the multiplication by 9.