Evaluate
\frac{15\sqrt{62}}{31}\approx 3.81000381
Share
Copied to clipboard
\sqrt{\frac{450}{31}}
Reduce the fraction \frac{900}{62} to lowest terms by extracting and canceling out 2.
\frac{\sqrt{450}}{\sqrt{31}}
Rewrite the square root of the division \sqrt{\frac{450}{31}} as the division of square roots \frac{\sqrt{450}}{\sqrt{31}}.
\frac{15\sqrt{2}}{\sqrt{31}}
Factor 450=15^{2}\times 2. Rewrite the square root of the product \sqrt{15^{2}\times 2} as the product of square roots \sqrt{15^{2}}\sqrt{2}. Take the square root of 15^{2}.
\frac{15\sqrt{2}\sqrt{31}}{\left(\sqrt{31}\right)^{2}}
Rationalize the denominator of \frac{15\sqrt{2}}{\sqrt{31}} by multiplying numerator and denominator by \sqrt{31}.
\frac{15\sqrt{2}\sqrt{31}}{31}
The square of \sqrt{31} is 31.
\frac{15\sqrt{62}}{31}
To multiply \sqrt{2} and \sqrt{31}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}