Evaluate
\frac{3\sqrt{7617919}}{39800}\approx 0.208044557
Share
Copied to clipboard
\sqrt{\frac{9-191\times 0.002025}{199}}
Calculate 0.045 to the power of 2 and get 0.002025.
\sqrt{\frac{9-0.386775}{199}}
Multiply 191 and 0.002025 to get 0.386775.
\sqrt{\frac{8.613225}{199}}
Subtract 0.386775 from 9 to get 8.613225.
\sqrt{\frac{8613225}{199000000}}
Expand \frac{8.613225}{199} by multiplying both numerator and the denominator by 1000000.
\sqrt{\frac{344529}{7960000}}
Reduce the fraction \frac{8613225}{199000000} to lowest terms by extracting and canceling out 25.
\frac{\sqrt{344529}}{\sqrt{7960000}}
Rewrite the square root of the division \sqrt{\frac{344529}{7960000}} as the division of square roots \frac{\sqrt{344529}}{\sqrt{7960000}}.
\frac{3\sqrt{38281}}{\sqrt{7960000}}
Factor 344529=3^{2}\times 38281. Rewrite the square root of the product \sqrt{3^{2}\times 38281} as the product of square roots \sqrt{3^{2}}\sqrt{38281}. Take the square root of 3^{2}.
\frac{3\sqrt{38281}}{200\sqrt{199}}
Factor 7960000=200^{2}\times 199. Rewrite the square root of the product \sqrt{200^{2}\times 199} as the product of square roots \sqrt{200^{2}}\sqrt{199}. Take the square root of 200^{2}.
\frac{3\sqrt{38281}\sqrt{199}}{200\left(\sqrt{199}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{38281}}{200\sqrt{199}} by multiplying numerator and denominator by \sqrt{199}.
\frac{3\sqrt{38281}\sqrt{199}}{200\times 199}
The square of \sqrt{199} is 199.
\frac{3\sqrt{7617919}}{200\times 199}
To multiply \sqrt{38281} and \sqrt{199}, multiply the numbers under the square root.
\frac{3\sqrt{7617919}}{39800}
Multiply 200 and 199 to get 39800.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}