Evaluate
\frac{\sqrt{42}}{7}+\frac{49}{6}\approx 9.092486766
Factor
\frac{6 \sqrt{42} + 343}{42} = 9.092486766439217
Share
Copied to clipboard
\frac{\sqrt{6}}{\sqrt{7}}+7+\frac{7}{6}
Rewrite the square root of the division \sqrt{\frac{6}{7}} as the division of square roots \frac{\sqrt{6}}{\sqrt{7}}.
\frac{\sqrt{6}\sqrt{7}}{\left(\sqrt{7}\right)^{2}}+7+\frac{7}{6}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\sqrt{6}\sqrt{7}}{7}+7+\frac{7}{6}
The square of \sqrt{7} is 7.
\frac{\sqrt{42}}{7}+7+\frac{7}{6}
To multiply \sqrt{6} and \sqrt{7}, multiply the numbers under the square root.
\frac{\sqrt{42}}{7}+\frac{42}{6}+\frac{7}{6}
Convert 7 to fraction \frac{42}{6}.
\frac{\sqrt{42}}{7}+\frac{42+7}{6}
Since \frac{42}{6} and \frac{7}{6} have the same denominator, add them by adding their numerators.
\frac{\sqrt{42}}{7}+\frac{49}{6}
Add 42 and 7 to get 49.
\frac{6\sqrt{42}}{42}+\frac{49\times 7}{42}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 6 is 42. Multiply \frac{\sqrt{42}}{7} times \frac{6}{6}. Multiply \frac{49}{6} times \frac{7}{7}.
\frac{6\sqrt{42}+49\times 7}{42}
Since \frac{6\sqrt{42}}{42} and \frac{49\times 7}{42} have the same denominator, add them by adding their numerators.
\frac{6\sqrt{42}+343}{42}
Do the multiplications in 6\sqrt{42}+49\times 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}