Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\frac{\sqrt{4}}{\sqrt{3}}}{\sqrt{\frac{3}{2}}}\sqrt{\frac{9}{8}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{\frac{2}{\sqrt{3}}}{\sqrt{\frac{3}{2}}}\sqrt{\frac{9}{8}}
Calculate the square root of 4 and get 2.
\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{3}{2}}}\sqrt{\frac{9}{8}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}}{\sqrt{\frac{3}{2}}}\sqrt{\frac{9}{8}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{3}}{\sqrt{2}}}\sqrt{\frac{9}{8}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}\sqrt{\frac{9}{8}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{3}\sqrt{2}}{2}}\sqrt{\frac{9}{8}}
The square of \sqrt{2} is 2.
\frac{\frac{2\sqrt{3}}{3}}{\frac{\sqrt{6}}{2}}\sqrt{\frac{9}{8}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\sqrt{3}\times 2}{3\sqrt{6}}\sqrt{\frac{9}{8}}
Divide \frac{2\sqrt{3}}{3} by \frac{\sqrt{6}}{2} by multiplying \frac{2\sqrt{3}}{3} by the reciprocal of \frac{\sqrt{6}}{2}.
\frac{2\sqrt{3}\times 2\sqrt{6}}{3\left(\sqrt{6}\right)^{2}}\sqrt{\frac{9}{8}}
Rationalize the denominator of \frac{2\sqrt{3}\times 2}{3\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{2\sqrt{3}\times 2\sqrt{6}}{3\times 6}\sqrt{\frac{9}{8}}
The square of \sqrt{6} is 6.
\frac{4\sqrt{3}\sqrt{6}}{3\times 6}\sqrt{\frac{9}{8}}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{3}\sqrt{3}\sqrt{2}}{3\times 6}\sqrt{\frac{9}{8}}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{4\times 3\sqrt{2}}{3\times 6}\sqrt{\frac{9}{8}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4\times 3\sqrt{2}}{18}\sqrt{\frac{9}{8}}
Multiply 3 and 6 to get 18.
\frac{12\sqrt{2}}{18}\sqrt{\frac{9}{8}}
Multiply 4 and 3 to get 12.
\frac{2}{3}\sqrt{2}\sqrt{\frac{9}{8}}
Divide 12\sqrt{2} by 18 to get \frac{2}{3}\sqrt{2}.
\frac{2}{3}\sqrt{2}\times \frac{\sqrt{9}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{9}{8}} as the division of square roots \frac{\sqrt{9}}{\sqrt{8}}.
\frac{2}{3}\sqrt{2}\times \frac{3}{\sqrt{8}}
Calculate the square root of 9 and get 3.
\frac{2}{3}\sqrt{2}\times \frac{3}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2}{3}\sqrt{2}\times \frac{3\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{3}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2}{3}\sqrt{2}\times \frac{3\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{2}{3}\sqrt{2}\times \frac{3\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{2\times 3\sqrt{2}}{3\times 4}\sqrt{2}
Multiply \frac{2}{3} times \frac{3\sqrt{2}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{2}}{2}\sqrt{2}
Cancel out 2\times 3 in both numerator and denominator.
\frac{\sqrt{2}\sqrt{2}}{2}
Express \frac{\sqrt{2}}{2}\sqrt{2} as a single fraction.
\frac{2}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
1
Divide 2 by 2 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}