Evaluate
\frac{\sqrt{6562}}{85}\approx 0.953013795
Share
Copied to clipboard
\sqrt{\frac{3088}{3400}}
Expand \frac{3.088}{3.4} by multiplying both numerator and the denominator by 1000.
\sqrt{\frac{386}{425}}
Reduce the fraction \frac{3088}{3400} to lowest terms by extracting and canceling out 8.
\frac{\sqrt{386}}{\sqrt{425}}
Rewrite the square root of the division \sqrt{\frac{386}{425}} as the division of square roots \frac{\sqrt{386}}{\sqrt{425}}.
\frac{\sqrt{386}}{5\sqrt{17}}
Factor 425=5^{2}\times 17. Rewrite the square root of the product \sqrt{5^{2}\times 17} as the product of square roots \sqrt{5^{2}}\sqrt{17}. Take the square root of 5^{2}.
\frac{\sqrt{386}\sqrt{17}}{5\left(\sqrt{17}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{386}}{5\sqrt{17}} by multiplying numerator and denominator by \sqrt{17}.
\frac{\sqrt{386}\sqrt{17}}{5\times 17}
The square of \sqrt{17} is 17.
\frac{\sqrt{6562}}{5\times 17}
To multiply \sqrt{386} and \sqrt{17}, multiply the numbers under the square root.
\frac{\sqrt{6562}}{85}
Multiply 5 and 17 to get 85.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}