Evaluate
\frac{\sqrt{11506}}{50}\approx 2.145320489
Share
Copied to clipboard
\sqrt{\frac{138.072}{3\times 10}}
Cancel out 2 in both numerator and denominator.
\sqrt{\frac{138.072}{30}}
Multiply 3 and 10 to get 30.
\sqrt{\frac{138072}{30000}}
Expand \frac{138.072}{30} by multiplying both numerator and the denominator by 1000.
\sqrt{\frac{5753}{1250}}
Reduce the fraction \frac{138072}{30000} to lowest terms by extracting and canceling out 24.
\frac{\sqrt{5753}}{\sqrt{1250}}
Rewrite the square root of the division \sqrt{\frac{5753}{1250}} as the division of square roots \frac{\sqrt{5753}}{\sqrt{1250}}.
\frac{\sqrt{5753}}{25\sqrt{2}}
Factor 1250=25^{2}\times 2. Rewrite the square root of the product \sqrt{25^{2}\times 2} as the product of square roots \sqrt{25^{2}}\sqrt{2}. Take the square root of 25^{2}.
\frac{\sqrt{5753}\sqrt{2}}{25\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5753}}{25\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{5753}\sqrt{2}}{25\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{11506}}{25\times 2}
To multiply \sqrt{5753} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{11506}}{50}
Multiply 25 and 2 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}