Evaluate
-3\sqrt{3}-1\approx -6.196152423
Factor
-3\sqrt{3}-1
Share
Copied to clipboard
\frac{\sqrt{2}}{\sqrt{3}}-\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}-\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{2}\sqrt{3}}{3}-\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
The square of \sqrt{3} is 3.
\frac{\sqrt{6}}{3}-\frac{1}{6}\sqrt{24}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{3}-\frac{1}{6}\times 2\sqrt{6}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{\sqrt{6}}{3}+\frac{-2}{6}\sqrt{6}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Express -\frac{1}{6}\times 2 as a single fraction.
\frac{\sqrt{6}}{3}-\frac{1}{3}\sqrt{6}-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
-\frac{3}{2}\sqrt{12}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Combine \frac{\sqrt{6}}{3} and -\frac{1}{3}\sqrt{6} to get 0.
-\frac{3}{2}\times 2\sqrt{3}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
-3\sqrt{3}+\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)
Cancel out 2 and 2.
-3\sqrt{3}+\left(\sqrt{2}\right)^{2}-\left(\sqrt{3}\right)^{2}
Consider \left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
-3\sqrt{3}+2-\left(\sqrt{3}\right)^{2}
The square of \sqrt{2} is 2.
-3\sqrt{3}+2-3
The square of \sqrt{3} is 3.
-3\sqrt{3}-1
Subtract 3 from 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}