Evaluate
\frac{3\sqrt{1270}}{175}\approx 0.610921018
Share
Copied to clipboard
\sqrt{\frac{18288}{98000}\times 2}
Expand \frac{1.8288}{9.8} by multiplying both numerator and the denominator by 10000.
\sqrt{\frac{1143}{6125}\times 2}
Reduce the fraction \frac{18288}{98000} to lowest terms by extracting and canceling out 16.
\sqrt{\frac{1143\times 2}{6125}}
Express \frac{1143}{6125}\times 2 as a single fraction.
\sqrt{\frac{2286}{6125}}
Multiply 1143 and 2 to get 2286.
\frac{\sqrt{2286}}{\sqrt{6125}}
Rewrite the square root of the division \sqrt{\frac{2286}{6125}} as the division of square roots \frac{\sqrt{2286}}{\sqrt{6125}}.
\frac{3\sqrt{254}}{\sqrt{6125}}
Factor 2286=3^{2}\times 254. Rewrite the square root of the product \sqrt{3^{2}\times 254} as the product of square roots \sqrt{3^{2}}\sqrt{254}. Take the square root of 3^{2}.
\frac{3\sqrt{254}}{35\sqrt{5}}
Factor 6125=35^{2}\times 5. Rewrite the square root of the product \sqrt{35^{2}\times 5} as the product of square roots \sqrt{35^{2}}\sqrt{5}. Take the square root of 35^{2}.
\frac{3\sqrt{254}\sqrt{5}}{35\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{254}}{35\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{254}\sqrt{5}}{35\times 5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{1270}}{35\times 5}
To multiply \sqrt{254} and \sqrt{5}, multiply the numbers under the square root.
\frac{3\sqrt{1270}}{175}
Multiply 35 and 5 to get 175.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}