Evaluate
2\left(\sqrt{6}+1\right)\approx 6.898979486
Factor
2 {(\sqrt{6} + 1)} = 6.898979486
Share
Copied to clipboard
\frac{\sqrt{1}}{\sqrt{3}}\left(2\sqrt{3}+6\sqrt{2}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}\left(2\sqrt{3}+6\sqrt{2}\right)
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(2\sqrt{3}+6\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}\left(2\sqrt{3}+6\sqrt{2}\right)
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{3}+6\sqrt{2}\right)}{3}
Express \frac{\sqrt{3}}{3}\left(2\sqrt{3}+6\sqrt{2}\right) as a single fraction.
\frac{2\left(\sqrt{3}\right)^{2}+6\sqrt{3}\sqrt{2}}{3}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{3}+6\sqrt{2}.
\frac{2\times 3+6\sqrt{3}\sqrt{2}}{3}
The square of \sqrt{3} is 3.
\frac{6+6\sqrt{3}\sqrt{2}}{3}
Multiply 2 and 3 to get 6.
\frac{6+6\sqrt{6}}{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}