Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{1}}{\sqrt{3}}\left(2\sqrt{3}+6\sqrt{2}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{\sqrt{3}}\left(2\sqrt{3}+6\sqrt{2}\right)
Calculate the square root of 1 and get 1.
\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\left(2\sqrt{3}+6\sqrt{2}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{3}\left(2\sqrt{3}+6\sqrt{2}\right)
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\left(2\sqrt{3}+6\sqrt{2}\right)}{3}
Express \frac{\sqrt{3}}{3}\left(2\sqrt{3}+6\sqrt{2}\right) as a single fraction.
\frac{2\left(\sqrt{3}\right)^{2}+6\sqrt{3}\sqrt{2}}{3}
Use the distributive property to multiply \sqrt{3} by 2\sqrt{3}+6\sqrt{2}.
\frac{2\times 3+6\sqrt{3}\sqrt{2}}{3}
The square of \sqrt{3} is 3.
\frac{6+6\sqrt{3}\sqrt{2}}{3}
Multiply 2 and 3 to get 6.
\frac{6+6\sqrt{6}}{3}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.