Evaluate
\frac{3\sqrt{5}}{500000}\approx 0.000013416
Share
Copied to clipboard
\sqrt{\frac{5\times 36\times 10^{-3}}{10^{9}}}
Cancel out 9 in both numerator and denominator.
\sqrt{\frac{5\times 36}{10^{12}}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\sqrt{\frac{180}{10^{12}}}
Multiply 5 and 36 to get 180.
\sqrt{\frac{180}{1000000000000}}
Calculate 10 to the power of 12 and get 1000000000000.
\sqrt{\frac{9}{50000000000}}
Reduce the fraction \frac{180}{1000000000000} to lowest terms by extracting and canceling out 20.
\frac{\sqrt{9}}{\sqrt{50000000000}}
Rewrite the square root of the division \sqrt{\frac{9}{50000000000}} as the division of square roots \frac{\sqrt{9}}{\sqrt{50000000000}}.
\frac{3}{\sqrt{50000000000}}
Calculate the square root of 9 and get 3.
\frac{3}{100000\sqrt{5}}
Factor 50000000000=100000^{2}\times 5. Rewrite the square root of the product \sqrt{100000^{2}\times 5} as the product of square roots \sqrt{100000^{2}}\sqrt{5}. Take the square root of 100000^{2}.
\frac{3\sqrt{5}}{100000\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{3}{100000\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{3\sqrt{5}}{100000\times 5}
The square of \sqrt{5} is 5.
\frac{3\sqrt{5}}{500000}
Multiply 100000 and 5 to get 500000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}