Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{\frac{\frac{\left(\frac{9}{4}-\frac{3}{2}\right)^{3}\left(\frac{3}{2}-\frac{2}{3}\right)^{3}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Add 2 and \frac{1}{4} to get \frac{9}{4}.
\sqrt{\frac{\frac{\left(\frac{3}{4}\right)^{3}\left(\frac{3}{2}-\frac{2}{3}\right)^{3}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Subtract \frac{3}{2} from \frac{9}{4} to get \frac{3}{4}.
\sqrt{\frac{\frac{\frac{27}{64}\left(\frac{3}{2}-\frac{2}{3}\right)^{3}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Calculate \frac{3}{4} to the power of 3 and get \frac{27}{64}.
\sqrt{\frac{\frac{\frac{27}{64}\times \left(\frac{5}{6}\right)^{3}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Subtract \frac{2}{3} from \frac{3}{2} to get \frac{5}{6}.
\sqrt{\frac{\frac{\frac{27}{64}\times \frac{125}{216}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Calculate \frac{5}{6} to the power of 3 and get \frac{125}{216}.
\sqrt{\frac{\frac{\frac{125}{512}}{\left(\frac{1}{3}+\frac{1}{2}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Multiply \frac{27}{64} and \frac{125}{216} to get \frac{125}{512}.
\sqrt{\frac{\frac{\frac{125}{512}}{\left(\frac{5}{6}-\frac{3}{4}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Add \frac{1}{3} and \frac{1}{2} to get \frac{5}{6}.
\sqrt{\frac{\frac{\frac{125}{512}}{\left(\frac{1}{12}\right)^{2}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Subtract \frac{3}{4} from \frac{5}{6} to get \frac{1}{12}.
\sqrt{\frac{\frac{\frac{125}{512}}{\frac{1}{144}}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Calculate \frac{1}{12} to the power of 2 and get \frac{1}{144}.
\sqrt{\frac{\frac{125}{512}\times 144}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Divide \frac{125}{512} by \frac{1}{144} by multiplying \frac{125}{512} by the reciprocal of \frac{1}{144}.
\sqrt{\frac{\frac{1125}{32}}{\left(\frac{3}{2}+\frac{1}{3}-\frac{7}{4}\right)^{2}}}
Multiply \frac{125}{512} and 144 to get \frac{1125}{32}.
\sqrt{\frac{\frac{1125}{32}}{\left(\frac{11}{6}-\frac{7}{4}\right)^{2}}}
Add \frac{3}{2} and \frac{1}{3} to get \frac{11}{6}.
\sqrt{\frac{\frac{1125}{32}}{\left(\frac{1}{12}\right)^{2}}}
Subtract \frac{7}{4} from \frac{11}{6} to get \frac{1}{12}.
\sqrt{\frac{\frac{1125}{32}}{\frac{1}{144}}}
Calculate \frac{1}{12} to the power of 2 and get \frac{1}{144}.
\sqrt{\frac{1125}{32}\times 144}
Divide \frac{1125}{32} by \frac{1}{144} by multiplying \frac{1125}{32} by the reciprocal of \frac{1}{144}.
\sqrt{\frac{10125}{2}}
Multiply \frac{1125}{32} and 144 to get \frac{10125}{2}.
\frac{\sqrt{10125}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{10125}{2}} as the division of square roots \frac{\sqrt{10125}}{\sqrt{2}}.
\frac{45\sqrt{5}}{\sqrt{2}}
Factor 10125=45^{2}\times 5. Rewrite the square root of the product \sqrt{45^{2}\times 5} as the product of square roots \sqrt{45^{2}}\sqrt{5}. Take the square root of 45^{2}.
\frac{45\sqrt{5}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{45\sqrt{5}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{45\sqrt{5}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{45\sqrt{10}}{2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.