Evaluate
11-\sqrt{7}\approx 8.354248689
Share
Copied to clipboard
\sqrt[4]{49}=\sqrt[4]{7^{2}}=7^{\frac{2}{4}}=7^{\frac{1}{2}}=\sqrt{7}
Rewrite \sqrt[4]{49} as \sqrt[4]{7^{2}}. Convert from radical to exponential form and cancel out 2 in the exponent. Convert back to radical form.
\sqrt{7}+\left(\sqrt{7}-2\right)^{2}+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Insert the obtained value back in the expression.
\sqrt{7}+\left(\sqrt{7}\right)^{2}-4\sqrt{7}+4+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-2\right)^{2}.
\sqrt{7}+7-4\sqrt{7}+4+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
The square of \sqrt{7} is 7.
\sqrt{7}+11-4\sqrt{7}+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Add 7 and 4 to get 11.
-3\sqrt{7}+11+\frac{10-\left(\sqrt{7}-\sqrt{3}\right)^{2}}{\sqrt{3}}
Combine \sqrt{7} and -4\sqrt{7} to get -3\sqrt{7}.
-3\sqrt{7}+11+\frac{10-\left(\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{3}\right)^{2}.
-3\sqrt{7}+11+\frac{10-\left(7-2\sqrt{7}\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
The square of \sqrt{7} is 7.
-3\sqrt{7}+11+\frac{10-\left(7-2\sqrt{21}+\left(\sqrt{3}\right)^{2}\right)}{\sqrt{3}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
-3\sqrt{7}+11+\frac{10-\left(7-2\sqrt{21}+3\right)}{\sqrt{3}}
The square of \sqrt{3} is 3.
-3\sqrt{7}+11+\frac{10-\left(10-2\sqrt{21}\right)}{\sqrt{3}}
Add 7 and 3 to get 10.
-3\sqrt{7}+11+\frac{10-10+2\sqrt{21}}{\sqrt{3}}
To find the opposite of 10-2\sqrt{21}, find the opposite of each term.
-3\sqrt{7}+11+\frac{2\sqrt{21}}{\sqrt{3}}
Subtract 10 from 10 to get 0.
-3\sqrt{7}+11+\frac{2\sqrt{21}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2\sqrt{21}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
-3\sqrt{7}+11+\frac{2\sqrt{21}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
-3\sqrt{7}+11+\frac{2\sqrt{3}\sqrt{7}\sqrt{3}}{3}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
-3\sqrt{7}+11+\frac{2\times 3\sqrt{7}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
-3\sqrt{7}+11+2\sqrt{7}
Cancel out 3 and 3.
-\sqrt{7}+11
Combine -3\sqrt{7} and 2\sqrt{7} to get -\sqrt{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}