Evaluate
\frac{\sqrt[3]{164}}{5}+1.3\approx 2.394740735
Share
Copied to clipboard
\sqrt[3]{\frac{164}{125}}-2+\sqrt{\frac{1}{100}}-\left(-2\right)^{3}\sqrt[3]{0.064}
Calculate \sqrt[3]{8} and get 2.
\sqrt[3]{\frac{164}{125}}-2+\frac{1}{10}-\left(-2\right)^{3}\sqrt[3]{0.064}
Rewrite the square root of the division \frac{1}{100} as the division of square roots \frac{\sqrt{1}}{\sqrt{100}}. Take the square root of both numerator and denominator.
\sqrt[3]{\frac{164}{125}}-\frac{19}{10}-\left(-2\right)^{3}\sqrt[3]{0.064}
Add -2 and \frac{1}{10} to get -\frac{19}{10}.
\sqrt[3]{\frac{164}{125}}-\frac{19}{10}-\left(-8\sqrt[3]{0.064}\right)
Calculate -2 to the power of 3 and get -8.
\sqrt[3]{\frac{164}{125}}-\frac{19}{10}-\left(-8\times \frac{2}{5}\right)
Calculate \sqrt[3]{0.064} and get \frac{2}{5}.
\sqrt[3]{\frac{164}{125}}-\frac{19}{10}-\left(-\frac{16}{5}\right)
Multiply -8 and \frac{2}{5} to get -\frac{16}{5}.
\sqrt[3]{\frac{164}{125}}-\frac{19}{10}+\frac{16}{5}
The opposite of -\frac{16}{5} is \frac{16}{5}.
\sqrt[3]{\frac{164}{125}}+\frac{13}{10}
Add -\frac{19}{10} and \frac{16}{5} to get \frac{13}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}