Solve for y
y=0
Graph
Share
Copied to clipboard
\left(\sqrt{y+3}\right)^{2}=\left(\sqrt{y}+\sqrt{3}\right)^{2}
Square both sides of the equation.
y+3=\left(\sqrt{y}+\sqrt{3}\right)^{2}
Calculate \sqrt{y+3} to the power of 2 and get y+3.
y+3=\left(\sqrt{y}\right)^{2}+2\sqrt{y}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{y}+\sqrt{3}\right)^{2}.
y+3=y+2\sqrt{y}\sqrt{3}+\left(\sqrt{3}\right)^{2}
Calculate \sqrt{y} to the power of 2 and get y.
y+3=y+2\sqrt{y}\sqrt{3}+3
The square of \sqrt{3} is 3.
y+3-y=2\sqrt{y}\sqrt{3}+3
Subtract y from both sides.
3=2\sqrt{y}\sqrt{3}+3
Combine y and -y to get 0.
2\sqrt{y}\sqrt{3}+3=3
Swap sides so that all variable terms are on the left hand side.
2\sqrt{y}\sqrt{3}=3-3
Subtract 3 from both sides.
2\sqrt{y}\sqrt{3}=0
Subtract 3 from 3 to get 0.
\frac{2\sqrt{3}\sqrt{y}}{2\sqrt{3}}=\frac{0}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
\sqrt{y}=\frac{0}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
\sqrt{y}=0
Divide 0 by 2\sqrt{3}.
y=0
Square both sides of the equation.
\sqrt{0+3}=\sqrt{0}+\sqrt{3}
Substitute 0 for y in the equation \sqrt{y+3}=\sqrt{y}+\sqrt{3}.
3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value y=0 satisfies the equation.
y=0
Equation \sqrt{y+3}=\sqrt{y}+\sqrt{3} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}