Solve for x
x=144
Graph
Share
Copied to clipboard
\sqrt{x-95}=19-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
\left(\sqrt{x-95}\right)^{2}=\left(19-\sqrt{x}\right)^{2}
Square both sides of the equation.
x-95=\left(19-\sqrt{x}\right)^{2}
Calculate \sqrt{x-95} to the power of 2 and get x-95.
x-95=361-38\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(19-\sqrt{x}\right)^{2}.
x-95=361-38\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
x-95+38\sqrt{x}=361+x
Add 38\sqrt{x} to both sides.
x-95+38\sqrt{x}-x=361
Subtract x from both sides.
-95+38\sqrt{x}=361
Combine x and -x to get 0.
38\sqrt{x}=361+95
Add 95 to both sides.
38\sqrt{x}=456
Add 361 and 95 to get 456.
\sqrt{x}=\frac{456}{38}
Divide both sides by 38.
\sqrt{x}=12
Divide 456 by 38 to get 12.
x=144
Square both sides of the equation.
\sqrt{144-95}+\sqrt{144}=19
Substitute 144 for x in the equation \sqrt{x-95}+\sqrt{x}=19.
19=19
Simplify. The value x=144 satisfies the equation.
x=144
Equation \sqrt{x-95}=-\sqrt{x}+19 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}