Solve for x (complex solution)
x=\frac{7+\sqrt{23}i}{2}\approx 3.5+2.397915762i
Graph
Share
Copied to clipboard
\left(\sqrt{x-9}\right)^{2}=\left(x-3\right)^{2}
Square both sides of the equation.
x-9=\left(x-3\right)^{2}
Calculate \sqrt{x-9} to the power of 2 and get x-9.
x-9=x^{2}-6x+9
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
x-9-x^{2}=-6x+9
Subtract x^{2} from both sides.
x-9-x^{2}+6x=9
Add 6x to both sides.
7x-9-x^{2}=9
Combine x and 6x to get 7x.
7x-9-x^{2}-9=0
Subtract 9 from both sides.
7x-18-x^{2}=0
Subtract 9 from -9 to get -18.
-x^{2}+7x-18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 7 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\left(-18\right)}}{2\left(-1\right)}
Square 7.
x=\frac{-7±\sqrt{49+4\left(-18\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-7±\sqrt{49-72}}{2\left(-1\right)}
Multiply 4 times -18.
x=\frac{-7±\sqrt{-23}}{2\left(-1\right)}
Add 49 to -72.
x=\frac{-7±\sqrt{23}i}{2\left(-1\right)}
Take the square root of -23.
x=\frac{-7±\sqrt{23}i}{-2}
Multiply 2 times -1.
x=\frac{-7+\sqrt{23}i}{-2}
Now solve the equation x=\frac{-7±\sqrt{23}i}{-2} when ± is plus. Add -7 to i\sqrt{23}.
x=\frac{-\sqrt{23}i+7}{2}
Divide -7+i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i-7}{-2}
Now solve the equation x=\frac{-7±\sqrt{23}i}{-2} when ± is minus. Subtract i\sqrt{23} from -7.
x=\frac{7+\sqrt{23}i}{2}
Divide -7-i\sqrt{23} by -2.
x=\frac{-\sqrt{23}i+7}{2} x=\frac{7+\sqrt{23}i}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{23}i+7}{2}-9}=\frac{-\sqrt{23}i+7}{2}-3
Substitute \frac{-\sqrt{23}i+7}{2} for x in the equation \sqrt{x-9}=x-3.
-\left(\frac{1}{2}-\frac{1}{2}i\times 23^{\frac{1}{2}}\right)=-\frac{1}{2}i\times 23^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{23}i+7}{2} does not satisfy the equation.
\sqrt{\frac{7+\sqrt{23}i}{2}-9}=\frac{7+\sqrt{23}i}{2}-3
Substitute \frac{7+\sqrt{23}i}{2} for x in the equation \sqrt{x-9}=x-3.
\frac{1}{2}+\frac{1}{2}i\times 23^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 23^{\frac{1}{2}}
Simplify. The value x=\frac{7+\sqrt{23}i}{2} satisfies the equation.
x=\frac{7+\sqrt{23}i}{2}
Equation \sqrt{x-9}=x-3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}