Solve for x
x=6
Graph
Share
Copied to clipboard
\sqrt{x-5}=-3+\sqrt{x+10}
Subtract -\sqrt{x+10} from both sides of the equation.
\left(\sqrt{x-5}\right)^{2}=\left(-3+\sqrt{x+10}\right)^{2}
Square both sides of the equation.
x-5=\left(-3+\sqrt{x+10}\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x-5=9-6\sqrt{x+10}+\left(\sqrt{x+10}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-3+\sqrt{x+10}\right)^{2}.
x-5=9-6\sqrt{x+10}+x+10
Calculate \sqrt{x+10} to the power of 2 and get x+10.
x-5=19-6\sqrt{x+10}+x
Add 9 and 10 to get 19.
x-5+6\sqrt{x+10}=19+x
Add 6\sqrt{x+10} to both sides.
x-5+6\sqrt{x+10}-x=19
Subtract x from both sides.
-5+6\sqrt{x+10}=19
Combine x and -x to get 0.
6\sqrt{x+10}=19+5
Add 5 to both sides.
6\sqrt{x+10}=24
Add 19 and 5 to get 24.
\sqrt{x+10}=\frac{24}{6}
Divide both sides by 6.
\sqrt{x+10}=4
Divide 24 by 6 to get 4.
x+10=16
Square both sides of the equation.
x+10-10=16-10
Subtract 10 from both sides of the equation.
x=16-10
Subtracting 10 from itself leaves 0.
x=6
Subtract 10 from 16.
\sqrt{6-5}-\sqrt{6+10}=-3
Substitute 6 for x in the equation \sqrt{x-5}-\sqrt{x+10}=-3.
-3=-3
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x-5}=\sqrt{x+10}-3 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}