Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x-5}=10-3\sqrt{x+3}
Subtract 3\sqrt{x+3} from both sides of the equation.
\left(\sqrt{x-5}\right)^{2}=\left(10-3\sqrt{x+3}\right)^{2}
Square both sides of the equation.
x-5=\left(10-3\sqrt{x+3}\right)^{2}
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x-5=100-60\sqrt{x+3}+9\left(\sqrt{x+3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-3\sqrt{x+3}\right)^{2}.
x-5=100-60\sqrt{x+3}+9\left(x+3\right)
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x-5=100-60\sqrt{x+3}+9x+27
Use the distributive property to multiply 9 by x+3.
x-5=127-60\sqrt{x+3}+9x
Add 100 and 27 to get 127.
x-5-\left(127+9x\right)=-60\sqrt{x+3}
Subtract 127+9x from both sides of the equation.
x-5-127-9x=-60\sqrt{x+3}
To find the opposite of 127+9x, find the opposite of each term.
x-132-9x=-60\sqrt{x+3}
Subtract 127 from -5 to get -132.
-8x-132=-60\sqrt{x+3}
Combine x and -9x to get -8x.
\left(-8x-132\right)^{2}=\left(-60\sqrt{x+3}\right)^{2}
Square both sides of the equation.
64x^{2}+2112x+17424=\left(-60\sqrt{x+3}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-8x-132\right)^{2}.
64x^{2}+2112x+17424=\left(-60\right)^{2}\left(\sqrt{x+3}\right)^{2}
Expand \left(-60\sqrt{x+3}\right)^{2}.
64x^{2}+2112x+17424=3600\left(\sqrt{x+3}\right)^{2}
Calculate -60 to the power of 2 and get 3600.
64x^{2}+2112x+17424=3600\left(x+3\right)
Calculate \sqrt{x+3} to the power of 2 and get x+3.
64x^{2}+2112x+17424=3600x+10800
Use the distributive property to multiply 3600 by x+3.
64x^{2}+2112x+17424-3600x=10800
Subtract 3600x from both sides.
64x^{2}-1488x+17424=10800
Combine 2112x and -3600x to get -1488x.
64x^{2}-1488x+17424-10800=0
Subtract 10800 from both sides.
64x^{2}-1488x+6624=0
Subtract 10800 from 17424 to get 6624.
x=\frac{-\left(-1488\right)±\sqrt{\left(-1488\right)^{2}-4\times 64\times 6624}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, -1488 for b, and 6624 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1488\right)±\sqrt{2214144-4\times 64\times 6624}}{2\times 64}
Square -1488.
x=\frac{-\left(-1488\right)±\sqrt{2214144-256\times 6624}}{2\times 64}
Multiply -4 times 64.
x=\frac{-\left(-1488\right)±\sqrt{2214144-1695744}}{2\times 64}
Multiply -256 times 6624.
x=\frac{-\left(-1488\right)±\sqrt{518400}}{2\times 64}
Add 2214144 to -1695744.
x=\frac{-\left(-1488\right)±720}{2\times 64}
Take the square root of 518400.
x=\frac{1488±720}{2\times 64}
The opposite of -1488 is 1488.
x=\frac{1488±720}{128}
Multiply 2 times 64.
x=\frac{2208}{128}
Now solve the equation x=\frac{1488±720}{128} when ± is plus. Add 1488 to 720.
x=\frac{69}{4}
Reduce the fraction \frac{2208}{128} to lowest terms by extracting and canceling out 32.
x=\frac{768}{128}
Now solve the equation x=\frac{1488±720}{128} when ± is minus. Subtract 720 from 1488.
x=6
Divide 768 by 128.
x=\frac{69}{4} x=6
The equation is now solved.
\sqrt{\frac{69}{4}-5}+3\sqrt{\frac{69}{4}+3}=10
Substitute \frac{69}{4} for x in the equation \sqrt{x-5}+3\sqrt{x+3}=10.
17=10
Simplify. The value x=\frac{69}{4} does not satisfy the equation.
\sqrt{6-5}+3\sqrt{6+3}=10
Substitute 6 for x in the equation \sqrt{x-5}+3\sqrt{x+3}=10.
10=10
Simplify. The value x=6 satisfies the equation.
x=6
Equation \sqrt{x-5}=-3\sqrt{x+3}+10 has a unique solution.