Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x-2}=4-\sqrt{x}
Subtract \sqrt{x} from both sides of the equation.
\left(\sqrt{x-2}\right)^{2}=\left(4-\sqrt{x}\right)^{2}
Square both sides of the equation.
x-2=\left(4-\sqrt{x}\right)^{2}
Calculate \sqrt{x-2} to the power of 2 and get x-2.
x-2=16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{x}\right)^{2}.
x-2=16-8\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
x-2+8\sqrt{x}=16+x
Add 8\sqrt{x} to both sides.
x-2+8\sqrt{x}-x=16
Subtract x from both sides.
-2+8\sqrt{x}=16
Combine x and -x to get 0.
8\sqrt{x}=16+2
Add 2 to both sides.
8\sqrt{x}=18
Add 16 and 2 to get 18.
\sqrt{x}=\frac{18}{8}
Divide both sides by 8.
\sqrt{x}=\frac{9}{4}
Reduce the fraction \frac{18}{8} to lowest terms by extracting and canceling out 2.
x=\frac{81}{16}
Square both sides of the equation.
\sqrt{\frac{81}{16}-2}+\sqrt{\frac{81}{16}}=4
Substitute \frac{81}{16} for x in the equation \sqrt{x-2}+\sqrt{x}=4.
4=4
Simplify. The value x=\frac{81}{16} satisfies the equation.
x=\frac{81}{16}
Equation \sqrt{x-2}=-\sqrt{x}+4 has a unique solution.