Solve for x
x=12
Graph
Share
Copied to clipboard
\left(\sqrt{x-11}\right)^{2}=\left(5-\sqrt{x+4}\right)^{2}
Square both sides of the equation.
x-11=\left(5-\sqrt{x+4}\right)^{2}
Calculate \sqrt{x-11} to the power of 2 and get x-11.
x-11=25-10\sqrt{x+4}+\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x+4}\right)^{2}.
x-11=25-10\sqrt{x+4}+x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x-11=29-10\sqrt{x+4}+x
Add 25 and 4 to get 29.
x-11+10\sqrt{x+4}=29+x
Add 10\sqrt{x+4} to both sides.
x-11+10\sqrt{x+4}-x=29
Subtract x from both sides.
-11+10\sqrt{x+4}=29
Combine x and -x to get 0.
10\sqrt{x+4}=29+11
Add 11 to both sides.
10\sqrt{x+4}=40
Add 29 and 11 to get 40.
\sqrt{x+4}=\frac{40}{10}
Divide both sides by 10.
\sqrt{x+4}=4
Divide 40 by 10 to get 4.
x+4=16
Square both sides of the equation.
x+4-4=16-4
Subtract 4 from both sides of the equation.
x=16-4
Subtracting 4 from itself leaves 0.
x=12
Subtract 4 from 16.
\sqrt{12-11}=5-\sqrt{12+4}
Substitute 12 for x in the equation \sqrt{x-11}=5-\sqrt{x+4}.
1=1
Simplify. The value x=12 satisfies the equation.
x=12
Equation \sqrt{x-11}=-\sqrt{x+4}+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}