Solve for x (complex solution)
x = -\frac{5}{3} = -1\frac{2}{3} \approx -1.666666667
Graph
Share
Copied to clipboard
\left(\sqrt{x-1}\right)^{2}=\left(2\sqrt{1+x}\right)^{2}
Square both sides of the equation.
x-1=\left(2\sqrt{1+x}\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x-1=2^{2}\left(\sqrt{1+x}\right)^{2}
Expand \left(2\sqrt{1+x}\right)^{2}.
x-1=4\left(\sqrt{1+x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x-1=4\left(1+x\right)
Calculate \sqrt{1+x} to the power of 2 and get 1+x.
x-1=4+4x
Use the distributive property to multiply 4 by 1+x.
x-1-4x=4
Subtract 4x from both sides.
-3x-1=4
Combine x and -4x to get -3x.
-3x=4+1
Add 1 to both sides.
-3x=5
Add 4 and 1 to get 5.
x=\frac{5}{-3}
Divide both sides by -3.
x=-\frac{5}{3}
Fraction \frac{5}{-3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\sqrt{-\frac{5}{3}-1}=2\sqrt{1-\frac{5}{3}}
Substitute -\frac{5}{3} for x in the equation \sqrt{x-1}=2\sqrt{1+x}.
\frac{2}{3}i\times 6^{\frac{1}{2}}=\frac{2}{3}i\times 6^{\frac{1}{2}}
Simplify. The value x=-\frac{5}{3} satisfies the equation.
x=-\frac{5}{3}
Equation \sqrt{x-1}=2\sqrt{x+1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}