Solve for x
x = \frac{5 - \sqrt{5}}{2} \approx 1.381966011
Graph
Share
Copied to clipboard
\left(\sqrt{x-1}\right)^{2}=\left(-x+2\right)^{2}
Square both sides of the equation.
x-1=\left(-x+2\right)^{2}
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x-1=\left(-x\right)^{2}+4\left(-x\right)+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-x+2\right)^{2}.
x-1=x^{2}+4\left(-x\right)+4
Calculate -x to the power of 2 and get x^{2}.
x-1-x^{2}=4\left(-x\right)+4
Subtract x^{2} from both sides.
x-1-x^{2}-4\left(-x\right)=4
Subtract 4\left(-x\right) from both sides.
x-1-x^{2}-4\left(-x\right)-4=0
Subtract 4 from both sides.
x-1-x^{2}-4\left(-1\right)x-4=0
Multiply -1 and 4 to get -4.
x-1-x^{2}+4x-4=0
Multiply -4 and -1 to get 4.
5x-1-x^{2}-4=0
Combine x and 4x to get 5x.
5x-5-x^{2}=0
Subtract 4 from -1 to get -5.
-x^{2}+5x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 5 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 5.
x=\frac{-5±\sqrt{25+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-5±\sqrt{25-20}}{2\left(-1\right)}
Multiply 4 times -5.
x=\frac{-5±\sqrt{5}}{2\left(-1\right)}
Add 25 to -20.
x=\frac{-5±\sqrt{5}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{5}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{5}}{-2} when ± is plus. Add -5 to \sqrt{5}.
x=\frac{5-\sqrt{5}}{2}
Divide -5+\sqrt{5} by -2.
x=\frac{-\sqrt{5}-5}{-2}
Now solve the equation x=\frac{-5±\sqrt{5}}{-2} when ± is minus. Subtract \sqrt{5} from -5.
x=\frac{\sqrt{5}+5}{2}
Divide -5-\sqrt{5} by -2.
x=\frac{5-\sqrt{5}}{2} x=\frac{\sqrt{5}+5}{2}
The equation is now solved.
\sqrt{\frac{5-\sqrt{5}}{2}-1}=-\frac{5-\sqrt{5}}{2}+2
Substitute \frac{5-\sqrt{5}}{2} for x in the equation \sqrt{x-1}=-x+2.
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=-\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}
Simplify. The value x=\frac{5-\sqrt{5}}{2} satisfies the equation.
\sqrt{\frac{\sqrt{5}+5}{2}-1}=-\frac{\sqrt{5}+5}{2}+2
Substitute \frac{\sqrt{5}+5}{2} for x in the equation \sqrt{x-1}=-x+2.
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=-\frac{1}{2}\times 5^{\frac{1}{2}}-\frac{1}{2}
Simplify. The value x=\frac{\sqrt{5}+5}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{5-\sqrt{5}}{2}
Equation \sqrt{x-1}=2-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}