Skip to main content
Solve for y (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}y\right)^{2}=\left(\sqrt{y}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}y^{2}=\left(\sqrt{y}\right)^{2}
Expand \left(\sqrt{x}y\right)^{2}.
xy^{2}=\left(\sqrt{y}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
xy^{2}=y
Calculate \sqrt{y} to the power of 2 and get y.
xy^{2}-y=0
Subtract y from both sides.
y=\frac{-\left(-1\right)±\sqrt{1}}{2x}
This equation is in standard form: ax^{2}+bx+c=0. Substitute x for a, -1 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-1\right)±1}{2x}
Take the square root of 1.
y=\frac{1±1}{2x}
The opposite of -1 is 1.
y=\frac{2}{2x}
Now solve the equation y=\frac{1±1}{2x} when ± is plus. Add 1 to 1.
y=\frac{1}{x}
Divide 2 by 2x.
y=\frac{0}{2x}
Now solve the equation y=\frac{1±1}{2x} when ± is minus. Subtract 1 from 1.
y=0
Divide 0 by 2x.
y=\frac{1}{x} y=0
The equation is now solved.
\sqrt{x}\times \frac{1}{x}=\sqrt{\frac{1}{x}}
Substitute \frac{1}{x} for y in the equation \sqrt{x}y=\sqrt{y}.
x^{-\frac{1}{2}}=x^{-\frac{1}{2}}
Simplify. The value y=\frac{1}{x} satisfies the equation.
\sqrt{x}\times 0=\sqrt{0}
Substitute 0 for y in the equation \sqrt{x}y=\sqrt{y}.
0=0
Simplify. The value y=0 satisfies the equation.
y=\frac{1}{x} y=0
List all solutions of \sqrt{x}y=\sqrt{y}.
\frac{y\sqrt{x}}{y}=\frac{\sqrt{y}}{y}
Divide both sides by y.
\sqrt{x}=\frac{\sqrt{y}}{y}
Dividing by y undoes the multiplication by y.
\sqrt{x}=\frac{1}{\sqrt{y}}
Divide \sqrt{y} by y.
x=\frac{1}{y}
Square both sides of the equation.