Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}-1\right)^{2}=\left(\sqrt{x-10}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}-2\sqrt{x}+1=\left(\sqrt{x-10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{x}-1\right)^{2}.
x-2\sqrt{x}+1=\left(\sqrt{x-10}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x-2\sqrt{x}+1=x-10
Calculate \sqrt{x-10} to the power of 2 and get x-10.
x-2\sqrt{x}+1-x=-10
Subtract x from both sides.
-2\sqrt{x}+1=-10
Combine x and -x to get 0.
-2\sqrt{x}=-10-1
Subtract 1 from both sides.
-2\sqrt{x}=-11
Subtract 1 from -10 to get -11.
\sqrt{x}=\frac{-11}{-2}
Divide both sides by -2.
\sqrt{x}=\frac{11}{2}
Fraction \frac{-11}{-2} can be simplified to \frac{11}{2} by removing the negative sign from both the numerator and the denominator.
x=\frac{121}{4}
Square both sides of the equation.
\sqrt{\frac{121}{4}}-1=\sqrt{\frac{121}{4}-10}
Substitute \frac{121}{4} for x in the equation \sqrt{x}-1=\sqrt{x-10}.
\frac{9}{2}=\frac{9}{2}
Simplify. The value x=\frac{121}{4} satisfies the equation.
x=\frac{121}{4}
Equation \sqrt{x}-1=\sqrt{x-10} has a unique solution.