Solve for x
x = \frac{121}{4} = 30\frac{1}{4} = 30.25
Graph
Share
Copied to clipboard
\left(\sqrt{x}-1\right)^{2}=\left(\sqrt{x-10}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}-2\sqrt{x}+1=\left(\sqrt{x-10}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{x}-1\right)^{2}.
x-2\sqrt{x}+1=\left(\sqrt{x-10}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x-2\sqrt{x}+1=x-10
Calculate \sqrt{x-10} to the power of 2 and get x-10.
x-2\sqrt{x}+1-x=-10
Subtract x from both sides.
-2\sqrt{x}+1=-10
Combine x and -x to get 0.
-2\sqrt{x}=-10-1
Subtract 1 from both sides.
-2\sqrt{x}=-11
Subtract 1 from -10 to get -11.
\sqrt{x}=\frac{-11}{-2}
Divide both sides by -2.
\sqrt{x}=\frac{11}{2}
Fraction \frac{-11}{-2} can be simplified to \frac{11}{2} by removing the negative sign from both the numerator and the denominator.
x=\frac{121}{4}
Square both sides of the equation.
\sqrt{\frac{121}{4}}-1=\sqrt{\frac{121}{4}-10}
Substitute \frac{121}{4} for x in the equation \sqrt{x}-1=\sqrt{x-10}.
\frac{9}{2}=\frac{9}{2}
Simplify. The value x=\frac{121}{4} satisfies the equation.
x=\frac{121}{4}
Equation \sqrt{x}-1=\sqrt{x-10} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}