Solve for x
x=0
x = \frac{25}{16} = 1\frac{9}{16} = 1.5625
Graph
Share
Copied to clipboard
\left(5\sqrt{x}\right)^{2}=\left(4x\right)^{2}
Square both sides of the equation.
5^{2}\left(\sqrt{x}\right)^{2}=\left(4x\right)^{2}
Expand \left(5\sqrt{x}\right)^{2}.
25\left(\sqrt{x}\right)^{2}=\left(4x\right)^{2}
Calculate 5 to the power of 2 and get 25.
25x=\left(4x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
25x=4^{2}x^{2}
Expand \left(4x\right)^{2}.
25x=16x^{2}
Calculate 4 to the power of 2 and get 16.
25x-16x^{2}=0
Subtract 16x^{2} from both sides.
x\left(25-16x\right)=0
Factor out x.
x=0 x=\frac{25}{16}
To find equation solutions, solve x=0 and 25-16x=0.
5\sqrt{0}=4\times 0
Substitute 0 for x in the equation 5\sqrt{x}=4x.
0=0
Simplify. The value x=0 satisfies the equation.
5\sqrt{\frac{25}{16}}=4\times \frac{25}{16}
Substitute \frac{25}{16} for x in the equation 5\sqrt{x}=4x.
\frac{25}{4}=\frac{25}{4}
Simplify. The value x=\frac{25}{16} satisfies the equation.
x=0 x=\frac{25}{16}
List all solutions of 5\sqrt{x}=4x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}