Solve for x
x = \frac{\sqrt{1821} + 911}{50} \approx 19.073463532
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(5x+9-100\right)^{2}
Square both sides of the equation.
x=\left(5x+9-100\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(5x-91\right)^{2}
Subtract 100 from 9 to get -91.
x=25x^{2}-910x+8281
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-91\right)^{2}.
x-25x^{2}=-910x+8281
Subtract 25x^{2} from both sides.
x-25x^{2}+910x=8281
Add 910x to both sides.
911x-25x^{2}=8281
Combine x and 910x to get 911x.
911x-25x^{2}-8281=0
Subtract 8281 from both sides.
-25x^{2}+911x-8281=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-911±\sqrt{911^{2}-4\left(-25\right)\left(-8281\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 911 for b, and -8281 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-911±\sqrt{829921-4\left(-25\right)\left(-8281\right)}}{2\left(-25\right)}
Square 911.
x=\frac{-911±\sqrt{829921+100\left(-8281\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-911±\sqrt{829921-828100}}{2\left(-25\right)}
Multiply 100 times -8281.
x=\frac{-911±\sqrt{1821}}{2\left(-25\right)}
Add 829921 to -828100.
x=\frac{-911±\sqrt{1821}}{-50}
Multiply 2 times -25.
x=\frac{\sqrt{1821}-911}{-50}
Now solve the equation x=\frac{-911±\sqrt{1821}}{-50} when ± is plus. Add -911 to \sqrt{1821}.
x=\frac{911-\sqrt{1821}}{50}
Divide -911+\sqrt{1821} by -50.
x=\frac{-\sqrt{1821}-911}{-50}
Now solve the equation x=\frac{-911±\sqrt{1821}}{-50} when ± is minus. Subtract \sqrt{1821} from -911.
x=\frac{\sqrt{1821}+911}{50}
Divide -911-\sqrt{1821} by -50.
x=\frac{911-\sqrt{1821}}{50} x=\frac{\sqrt{1821}+911}{50}
The equation is now solved.
\sqrt{\frac{911-\sqrt{1821}}{50}}=5\times \frac{911-\sqrt{1821}}{50}+9-100
Substitute \frac{911-\sqrt{1821}}{50} for x in the equation \sqrt{x}=5x+9-100.
-\left(\frac{1}{10}-\frac{1}{10}\times 1821^{\frac{1}{2}}\right)=\frac{1}{10}-\frac{1}{10}\times 1821^{\frac{1}{2}}
Simplify. The value x=\frac{911-\sqrt{1821}}{50} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{1821}+911}{50}}=5\times \frac{\sqrt{1821}+911}{50}+9-100
Substitute \frac{\sqrt{1821}+911}{50} for x in the equation \sqrt{x}=5x+9-100.
\frac{1}{10}+\frac{1}{10}\times 1821^{\frac{1}{2}}=\frac{1}{10}\times 1821^{\frac{1}{2}}+\frac{1}{10}
Simplify. The value x=\frac{\sqrt{1821}+911}{50} satisfies the equation.
x=\frac{\sqrt{1821}+911}{50}
Equation \sqrt{x}=5x-91 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}