Solve for x
x = \frac{361 - \sqrt{721}}{2} \approx 167.074278418
Graph
Share
Copied to clipboard
\left(\sqrt{x}\right)^{2}=\left(180-x\right)^{2}
Square both sides of the equation.
x=\left(180-x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=32400-360x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(180-x\right)^{2}.
x-32400=-360x+x^{2}
Subtract 32400 from both sides.
x-32400+360x=x^{2}
Add 360x to both sides.
361x-32400=x^{2}
Combine x and 360x to get 361x.
361x-32400-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+361x-32400=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-361±\sqrt{361^{2}-4\left(-1\right)\left(-32400\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 361 for b, and -32400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-361±\sqrt{130321-4\left(-1\right)\left(-32400\right)}}{2\left(-1\right)}
Square 361.
x=\frac{-361±\sqrt{130321+4\left(-32400\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-361±\sqrt{130321-129600}}{2\left(-1\right)}
Multiply 4 times -32400.
x=\frac{-361±\sqrt{721}}{2\left(-1\right)}
Add 130321 to -129600.
x=\frac{-361±\sqrt{721}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{721}-361}{-2}
Now solve the equation x=\frac{-361±\sqrt{721}}{-2} when ± is plus. Add -361 to \sqrt{721}.
x=\frac{361-\sqrt{721}}{2}
Divide -361+\sqrt{721} by -2.
x=\frac{-\sqrt{721}-361}{-2}
Now solve the equation x=\frac{-361±\sqrt{721}}{-2} when ± is minus. Subtract \sqrt{721} from -361.
x=\frac{\sqrt{721}+361}{2}
Divide -361-\sqrt{721} by -2.
x=\frac{361-\sqrt{721}}{2} x=\frac{\sqrt{721}+361}{2}
The equation is now solved.
\sqrt{\frac{361-\sqrt{721}}{2}}=180-\frac{361-\sqrt{721}}{2}
Substitute \frac{361-\sqrt{721}}{2} for x in the equation \sqrt{x}=180-x.
-\left(\frac{1}{2}-\frac{1}{2}\times 721^{\frac{1}{2}}\right)=-\frac{1}{2}+\frac{1}{2}\times 721^{\frac{1}{2}}
Simplify. The value x=\frac{361-\sqrt{721}}{2} satisfies the equation.
\sqrt{\frac{\sqrt{721}+361}{2}}=180-\frac{\sqrt{721}+361}{2}
Substitute \frac{\sqrt{721}+361}{2} for x in the equation \sqrt{x}=180-x.
\frac{1}{2}+\frac{1}{2}\times 721^{\frac{1}{2}}=-\frac{1}{2}-\frac{1}{2}\times 721^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{721}+361}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{361-\sqrt{721}}{2}
Equation \sqrt{x}=180-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}