Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x}=2-2x
Subtract 2x from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(2-2x\right)^{2}
Square both sides of the equation.
x=\left(2-2x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=4-8x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
x-4=-8x+4x^{2}
Subtract 4 from both sides.
x-4+8x=4x^{2}
Add 8x to both sides.
9x-4=4x^{2}
Combine x and 8x to get 9x.
9x-4-4x^{2}=0
Subtract 4x^{2} from both sides.
-4x^{2}+9x-4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-9±\sqrt{9^{2}-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 9 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\left(-4\right)\left(-4\right)}}{2\left(-4\right)}
Square 9.
x=\frac{-9±\sqrt{81+16\left(-4\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-9±\sqrt{81-64}}{2\left(-4\right)}
Multiply 16 times -4.
x=\frac{-9±\sqrt{17}}{2\left(-4\right)}
Add 81 to -64.
x=\frac{-9±\sqrt{17}}{-8}
Multiply 2 times -4.
x=\frac{\sqrt{17}-9}{-8}
Now solve the equation x=\frac{-9±\sqrt{17}}{-8} when ± is plus. Add -9 to \sqrt{17}.
x=\frac{9-\sqrt{17}}{8}
Divide -9+\sqrt{17} by -8.
x=\frac{-\sqrt{17}-9}{-8}
Now solve the equation x=\frac{-9±\sqrt{17}}{-8} when ± is minus. Subtract \sqrt{17} from -9.
x=\frac{\sqrt{17}+9}{8}
Divide -9-\sqrt{17} by -8.
x=\frac{9-\sqrt{17}}{8} x=\frac{\sqrt{17}+9}{8}
The equation is now solved.
\sqrt{\frac{9-\sqrt{17}}{8}}+2\times \frac{9-\sqrt{17}}{8}=2
Substitute \frac{9-\sqrt{17}}{8} for x in the equation \sqrt{x}+2x=2.
2=2
Simplify. The value x=\frac{9-\sqrt{17}}{8} satisfies the equation.
\sqrt{\frac{\sqrt{17}+9}{8}}+2\times \frac{\sqrt{17}+9}{8}=2
Substitute \frac{\sqrt{17}+9}{8} for x in the equation \sqrt{x}+2x=2.
\frac{5}{2}+\frac{1}{2}\times 17^{\frac{1}{2}}=2
Simplify. The value x=\frac{\sqrt{17}+9}{8} does not satisfy the equation.
x=\frac{9-\sqrt{17}}{8}
Equation \sqrt{x}=2-2x has a unique solution.