Solve for y (complex solution)
y=\frac{x+\sqrt{x}+125}{630}
Solve for y
y=\frac{x+\sqrt{x}+125}{630}
x\geq 0
Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{\left(\sqrt{2520y-499}+1\right)^{2}}{4}\text{, }&arg(\frac{\sqrt{2520y-499}+1}{2})\geq \pi \\x=0\text{, }&y=\frac{25}{126}\\x=\frac{\left(-\sqrt{2520y-499}+1\right)^{2}}{4}\text{, }&arg(\frac{-\sqrt{2520y-499}+1}{2})\geq \pi \end{matrix}\right.
Solve for x
x=\frac{\left(-\sqrt{2520y-499}+1\right)^{2}}{4}
y\geq \frac{499}{2520}\text{ and }-\frac{-\sqrt{2520y-499}+1}{2}\geq 0
Graph
Share
Copied to clipboard
630y-x=\sqrt{x}+125
Swap sides so that all variable terms are on the left hand side.
630y=\sqrt{x}+125+x
Add x to both sides.
630y=x+\sqrt{x}+125
The equation is in standard form.
\frac{630y}{630}=\frac{x+\sqrt{x}+125}{630}
Divide both sides by 630.
y=\frac{x+\sqrt{x}+125}{630}
Dividing by 630 undoes the multiplication by 630.
y=\frac{x}{630}+\frac{\sqrt{x}}{630}+\frac{25}{126}
Divide \sqrt{x}+125+x by 630.
630y-x=\sqrt{x}+125
Swap sides so that all variable terms are on the left hand side.
630y=\sqrt{x}+125+x
Add x to both sides.
630y=x+\sqrt{x}+125
The equation is in standard form.
\frac{630y}{630}=\frac{x+\sqrt{x}+125}{630}
Divide both sides by 630.
y=\frac{x+\sqrt{x}+125}{630}
Dividing by 630 undoes the multiplication by 630.
y=\frac{x}{630}+\frac{\sqrt{x}}{630}+\frac{25}{126}
Divide \sqrt{x}+125+x by 630.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}