Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x}+0.3\right)^{2}=\left(\sqrt{x+4}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}+0.6\sqrt{x}+0.09=\left(\sqrt{x+4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+0.3\right)^{2}.
x+0.6\sqrt{x}+0.09=\left(\sqrt{x+4}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x+0.6\sqrt{x}+0.09=x+4
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x+0.6\sqrt{x}+0.09-x=4
Subtract x from both sides.
0.6\sqrt{x}+0.09=4
Combine x and -x to get 0.
0.6\sqrt{x}=4-0.09
Subtract 0.09 from both sides.
0.6\sqrt{x}=3.91
Subtract 0.09 from 4 to get 3.91.
\sqrt{x}=\frac{3.91}{0.6}
Divide both sides by 0.6.
\sqrt{x}=\frac{391}{60}
Expand \frac{3.91}{0.6} by multiplying both numerator and the denominator by 100.
x=\frac{152881}{3600}
Square both sides of the equation.
\sqrt{\frac{152881}{3600}}+0.3=\sqrt{\frac{152881}{3600}+4}
Substitute \frac{152881}{3600} for x in the equation \sqrt{x}+0.3=\sqrt{x+4}.
\frac{409}{60}=\frac{409}{60}
Simplify. The value x=\frac{152881}{3600} satisfies the equation.
x=\frac{152881}{3600}
Equation \sqrt{x}+0.3=\sqrt{x+4} has a unique solution.