Solve for x
x = \frac{16}{7} = 2\frac{2}{7} \approx 2.285714286
Graph
Share
Copied to clipboard
\sqrt{x}=\sqrt{7}-\sqrt{x-1}
Subtract \sqrt{x-1} from both sides of the equation.
\left(\sqrt{x}\right)^{2}=\left(\sqrt{7}-\sqrt{x-1}\right)^{2}
Square both sides of the equation.
x=\left(\sqrt{7}-\sqrt{x-1}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x=\left(\sqrt{7}\right)^{2}-2\sqrt{7}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{7}-\sqrt{x-1}\right)^{2}.
x=7-2\sqrt{7}\sqrt{x-1}+\left(\sqrt{x-1}\right)^{2}
The square of \sqrt{7} is 7.
x=7-2\sqrt{7}\sqrt{x-1}+x-1
Calculate \sqrt{x-1} to the power of 2 and get x-1.
x=6-2\sqrt{7}\sqrt{x-1}+x
Subtract 1 from 7 to get 6.
x+2\sqrt{7}\sqrt{x-1}=6+x
Add 2\sqrt{7}\sqrt{x-1} to both sides.
x+2\sqrt{7}\sqrt{x-1}-x=6
Subtract x from both sides.
2\sqrt{7}\sqrt{x-1}=6
Combine x and -x to get 0.
\frac{2\sqrt{7}\sqrt{x-1}}{2\sqrt{7}}=\frac{6}{2\sqrt{7}}
Divide both sides by 2\sqrt{7}.
\sqrt{x-1}=\frac{6}{2\sqrt{7}}
Dividing by 2\sqrt{7} undoes the multiplication by 2\sqrt{7}.
\sqrt{x-1}=\frac{3\sqrt{7}}{7}
Divide 6 by 2\sqrt{7}.
x-1=\frac{9}{7}
Square both sides of the equation.
x-1-\left(-1\right)=\frac{9}{7}-\left(-1\right)
Add 1 to both sides of the equation.
x=\frac{9}{7}-\left(-1\right)
Subtracting -1 from itself leaves 0.
x=\frac{16}{7}
Subtract -1 from \frac{9}{7}.
\sqrt{\frac{16}{7}}+\sqrt{\frac{16}{7}-1}=\sqrt{7}
Substitute \frac{16}{7} for x in the equation \sqrt{x}+\sqrt{x-1}=\sqrt{7}.
7^{\frac{1}{2}}=7^{\frac{1}{2}}
Simplify. The value x=\frac{16}{7} satisfies the equation.
x=\frac{16}{7}
Equation \sqrt{x}=-\sqrt{x-1}+\sqrt{7} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}