Solve for x
x = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
\left(\sqrt{x}+\sqrt{3}\right)^{2}=\left(\sqrt{x+7}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x}\right)^{2}+2\sqrt{x}\sqrt{3}+\left(\sqrt{3}\right)^{2}=\left(\sqrt{x+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x}+\sqrt{3}\right)^{2}.
x+2\sqrt{x}\sqrt{3}+\left(\sqrt{3}\right)^{2}=\left(\sqrt{x+7}\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
x+2\sqrt{x}\sqrt{3}+3=\left(\sqrt{x+7}\right)^{2}
The square of \sqrt{3} is 3.
x+2\sqrt{x}\sqrt{3}+3=x+7
Calculate \sqrt{x+7} to the power of 2 and get x+7.
x+2\sqrt{x}\sqrt{3}+3-x=7
Subtract x from both sides.
2\sqrt{x}\sqrt{3}+3=7
Combine x and -x to get 0.
2\sqrt{x}\sqrt{3}=7-3
Subtract 3 from both sides.
2\sqrt{x}\sqrt{3}=4
Subtract 3 from 7 to get 4.
\frac{2\sqrt{3}\sqrt{x}}{2\sqrt{3}}=\frac{4}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
\sqrt{x}=\frac{4}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
\sqrt{x}=\frac{2\sqrt{3}}{3}
Divide 4 by 2\sqrt{3}.
x=\frac{4}{3}
Square both sides of the equation.
\sqrt{\frac{4}{3}}+\sqrt{3}=\sqrt{\frac{4}{3}+7}
Substitute \frac{4}{3} for x in the equation \sqrt{x}+\sqrt{3}=\sqrt{x+7}.
\frac{5}{3}\times 3^{\frac{1}{2}}=\frac{5}{3}\times 3^{\frac{1}{2}}
Simplify. The value x=\frac{4}{3} satisfies the equation.
x=\frac{4}{3}
Equation \sqrt{x}+\sqrt{3}=\sqrt{x+7} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}