Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}-4x-5}\right)^{2}=\left(\sqrt{-3x^{2}+7x}\right)^{2}
Square both sides of the equation.
x^{2}-4x-5=\left(\sqrt{-3x^{2}+7x}\right)^{2}
Calculate \sqrt{x^{2}-4x-5} to the power of 2 and get x^{2}-4x-5.
x^{2}-4x-5=-3x^{2}+7x
Calculate \sqrt{-3x^{2}+7x} to the power of 2 and get -3x^{2}+7x.
x^{2}-4x-5+3x^{2}=7x
Add 3x^{2} to both sides.
4x^{2}-4x-5=7x
Combine x^{2} and 3x^{2} to get 4x^{2}.
4x^{2}-4x-5-7x=0
Subtract 7x from both sides.
4x^{2}-11x-5=0
Combine -4x and -7x to get -11x.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 4\left(-5\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -11 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 4\left(-5\right)}}{2\times 4}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-16\left(-5\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-11\right)±\sqrt{121+80}}{2\times 4}
Multiply -16 times -5.
x=\frac{-\left(-11\right)±\sqrt{201}}{2\times 4}
Add 121 to 80.
x=\frac{11±\sqrt{201}}{2\times 4}
The opposite of -11 is 11.
x=\frac{11±\sqrt{201}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{201}+11}{8}
Now solve the equation x=\frac{11±\sqrt{201}}{8} when ± is plus. Add 11 to \sqrt{201}.
x=\frac{11-\sqrt{201}}{8}
Now solve the equation x=\frac{11±\sqrt{201}}{8} when ± is minus. Subtract \sqrt{201} from 11.
x=\frac{\sqrt{201}+11}{8} x=\frac{11-\sqrt{201}}{8}
The equation is now solved.
\sqrt{\left(\frac{\sqrt{201}+11}{8}\right)^{2}-4\times \frac{\sqrt{201}+11}{8}-5}=\sqrt{-3\times \left(\frac{\sqrt{201}+11}{8}\right)^{2}+7\times \frac{\sqrt{201}+11}{8}}
Substitute \frac{\sqrt{201}+11}{8} for x in the equation \sqrt{x^{2}-4x-5}=\sqrt{-3x^{2}+7x}.
\frac{1}{8}i\times 335^{\frac{1}{2}}+\frac{1}{8}i\times 15^{\frac{1}{2}}=\frac{1}{8}i\times 335^{\frac{1}{2}}+\frac{1}{8}i\times 15^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{201}+11}{8} satisfies the equation.
\sqrt{\left(\frac{11-\sqrt{201}}{8}\right)^{2}-4\times \frac{11-\sqrt{201}}{8}-5}=\sqrt{-3\times \left(\frac{11-\sqrt{201}}{8}\right)^{2}+7\times \frac{11-\sqrt{201}}{8}}
Substitute \frac{11-\sqrt{201}}{8} for x in the equation \sqrt{x^{2}-4x-5}=\sqrt{-3x^{2}+7x}.
\frac{1}{8}i\times 335^{\frac{1}{2}}-\frac{1}{8}i\times 15^{\frac{1}{2}}=\frac{1}{8}i\times 335^{\frac{1}{2}}-\frac{1}{8}i\times 15^{\frac{1}{2}}
Simplify. The value x=\frac{11-\sqrt{201}}{8} satisfies the equation.
x=\frac{\sqrt{201}+11}{8} x=\frac{11-\sqrt{201}}{8}
List all solutions of \sqrt{x^{2}-4x-5}=\sqrt{7x-3x^{2}}.