Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}-1}=2x
Subtract -2x from both sides of the equation.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(2x\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}-1=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-1-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-1=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}=-\frac{1}{3}
Divide both sides by -3.
x=\frac{\sqrt{3}i}{3} x=-\frac{\sqrt{3}i}{3}
The equation is now solved.
\sqrt{\left(\frac{\sqrt{3}i}{3}\right)^{2}-1}-2\times \frac{\sqrt{3}i}{3}=0
Substitute \frac{\sqrt{3}i}{3} for x in the equation \sqrt{x^{2}-1}-2x=0.
0=0
Simplify. The value x=\frac{\sqrt{3}i}{3} satisfies the equation.
\sqrt{\left(-\frac{\sqrt{3}i}{3}\right)^{2}-1}-2\left(-\frac{\sqrt{3}i}{3}\right)=0
Substitute -\frac{\sqrt{3}i}{3} for x in the equation \sqrt{x^{2}-1}-2x=0.
\frac{4}{3}i\times 3^{\frac{1}{2}}=0
Simplify. The value x=-\frac{\sqrt{3}i}{3} does not satisfy the equation.
x=\frac{\sqrt{3}i}{3}
Equation \sqrt{x^{2}-1}=2x has a unique solution.