Solve for x (complex solution)
x=\frac{\sqrt{3}i}{3}\approx 0.577350269i
Graph
Share
Copied to clipboard
\sqrt{x^{2}-1}=2x
Subtract -2x from both sides of the equation.
\left(\sqrt{x^{2}-1}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
x^{2}-1=\left(2x\right)^{2}
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
x^{2}-1=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}-1=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-1-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}-1=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}=1
Add 1 to both sides. Anything plus zero gives itself.
x^{2}=-\frac{1}{3}
Divide both sides by -3.
x=\frac{\sqrt{3}i}{3} x=-\frac{\sqrt{3}i}{3}
The equation is now solved.
\sqrt{\left(\frac{\sqrt{3}i}{3}\right)^{2}-1}-2\times \frac{\sqrt{3}i}{3}=0
Substitute \frac{\sqrt{3}i}{3} for x in the equation \sqrt{x^{2}-1}-2x=0.
0=0
Simplify. The value x=\frac{\sqrt{3}i}{3} satisfies the equation.
\sqrt{\left(-\frac{\sqrt{3}i}{3}\right)^{2}-1}-2\left(-\frac{\sqrt{3}i}{3}\right)=0
Substitute -\frac{\sqrt{3}i}{3} for x in the equation \sqrt{x^{2}-1}-2x=0.
\frac{4}{3}i\times 3^{\frac{1}{2}}=0
Simplify. The value x=-\frac{\sqrt{3}i}{3} does not satisfy the equation.
x=\frac{\sqrt{3}i}{3}
Equation \sqrt{x^{2}-1}=2x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}