Solve for x (complex solution)
x=-1
x=1
Solve for x
x=1
Graph
Share
Copied to clipboard
\left(\sqrt{x^{2}+x-1}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+x-1=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{x^{2}+x-1} to the power of 2 and get x^{2}+x-1.
x^{2}+x-1=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+x-1-x=0
Subtract x from both sides.
x^{2}-1=0
Combine x and -x to get 0.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
\sqrt{1^{2}+1-1}=\sqrt{1}
Substitute 1 for x in the equation \sqrt{x^{2}+x-1}=\sqrt{x}.
1=1
Simplify. The value x=1 satisfies the equation.
\sqrt{\left(-1\right)^{2}-1-1}=\sqrt{-1}
Substitute -1 for x in the equation \sqrt{x^{2}+x-1}=\sqrt{x}.
i=i
Simplify. The value x=-1 satisfies the equation.
x=1 x=-1
List all solutions of \sqrt{x^{2}+x-1}=\sqrt{x}.
\left(\sqrt{x^{2}+x-1}\right)^{2}=\left(\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}+x-1=\left(\sqrt{x}\right)^{2}
Calculate \sqrt{x^{2}+x-1} to the power of 2 and get x^{2}+x-1.
x^{2}+x-1=x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}+x-1-x=0
Subtract x from both sides.
x^{2}-1=0
Combine x and -x to get 0.
\left(x-1\right)\left(x+1\right)=0
Consider x^{2}-1. Rewrite x^{2}-1 as x^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=1 x=-1
To find equation solutions, solve x-1=0 and x+1=0.
\sqrt{1^{2}+1-1}=\sqrt{1}
Substitute 1 for x in the equation \sqrt{x^{2}+x-1}=\sqrt{x}.
1=1
Simplify. The value x=1 satisfies the equation.
\sqrt{\left(-1\right)^{2}-1-1}=\sqrt{-1}
Substitute -1 for x in the equation \sqrt{x^{2}+x-1}=\sqrt{x}. The expression \sqrt{\left(-1\right)^{2}-1-1} is undefined because the radicand cannot be negative.
x=1
Equation \sqrt{x^{2}+x-1}=\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}