Solve for x
x=3
Graph
Share
Copied to clipboard
\sqrt{x^{2}+5x+1}=2x-1
Subtract 1 from both sides of the equation.
\left(\sqrt{x^{2}+5x+1}\right)^{2}=\left(2x-1\right)^{2}
Square both sides of the equation.
x^{2}+5x+1=\left(2x-1\right)^{2}
Calculate \sqrt{x^{2}+5x+1} to the power of 2 and get x^{2}+5x+1.
x^{2}+5x+1=4x^{2}-4x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
x^{2}+5x+1-4x^{2}=-4x+1
Subtract 4x^{2} from both sides.
-3x^{2}+5x+1=-4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+5x+1+4x=1
Add 4x to both sides.
-3x^{2}+9x+1=1
Combine 5x and 4x to get 9x.
-3x^{2}+9x+1-1=0
Subtract 1 from both sides.
-3x^{2}+9x=0
Subtract 1 from 1 to get 0.
x\left(-3x+9\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -3x+9=0.
\sqrt{0^{2}+5\times 0+1}+1=2\times 0
Substitute 0 for x in the equation \sqrt{x^{2}+5x+1}+1=2x.
2=0
Simplify. The value x=0 does not satisfy the equation.
\sqrt{3^{2}+5\times 3+1}+1=2\times 3
Substitute 3 for x in the equation \sqrt{x^{2}+5x+1}+1=2x.
6=6
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x^{2}+5x+1}=2x-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}