Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}+5x+1}=2x-1
Subtract 1 from both sides of the equation.
\left(\sqrt{x^{2}+5x+1}\right)^{2}=\left(2x-1\right)^{2}
Square both sides of the equation.
x^{2}+5x+1=\left(2x-1\right)^{2}
Calculate \sqrt{x^{2}+5x+1} to the power of 2 and get x^{2}+5x+1.
x^{2}+5x+1=4x^{2}-4x+1
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
x^{2}+5x+1-4x^{2}=-4x+1
Subtract 4x^{2} from both sides.
-3x^{2}+5x+1=-4x+1
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}+5x+1+4x=1
Add 4x to both sides.
-3x^{2}+9x+1=1
Combine 5x and 4x to get 9x.
-3x^{2}+9x+1-1=0
Subtract 1 from both sides.
-3x^{2}+9x=0
Subtract 1 from 1 to get 0.
x\left(-3x+9\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and -3x+9=0.
\sqrt{0^{2}+5\times 0+1}+1=2\times 0
Substitute 0 for x in the equation \sqrt{x^{2}+5x+1}+1=2x.
2=0
Simplify. The value x=0 does not satisfy the equation.
\sqrt{3^{2}+5\times 3+1}+1=2\times 3
Substitute 3 for x in the equation \sqrt{x^{2}+5x+1}+1=2x.
6=6
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{x^{2}+5x+1}=2x-1 has a unique solution.