Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x^{2}+4x+13}=5-\sqrt{x^{2}-2x-2}
Subtract \sqrt{x^{2}-2x-2} from both sides of the equation.
\left(\sqrt{x^{2}+4x+13}\right)^{2}=\left(5-\sqrt{x^{2}-2x-2}\right)^{2}
Square both sides of the equation.
x^{2}+4x+13=\left(5-\sqrt{x^{2}-2x-2}\right)^{2}
Calculate \sqrt{x^{2}+4x+13} to the power of 2 and get x^{2}+4x+13.
x^{2}+4x+13=25-10\sqrt{x^{2}-2x-2}+\left(\sqrt{x^{2}-2x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{x^{2}-2x-2}\right)^{2}.
x^{2}+4x+13=25-10\sqrt{x^{2}-2x-2}+x^{2}-2x-2
Calculate \sqrt{x^{2}-2x-2} to the power of 2 and get x^{2}-2x-2.
x^{2}+4x+13=23-10\sqrt{x^{2}-2x-2}+x^{2}-2x
Subtract 2 from 25 to get 23.
x^{2}+4x+13-\left(23+x^{2}-2x\right)=-10\sqrt{x^{2}-2x-2}
Subtract 23+x^{2}-2x from both sides of the equation.
x^{2}+4x+13-23-x^{2}+2x=-10\sqrt{x^{2}-2x-2}
To find the opposite of 23+x^{2}-2x, find the opposite of each term.
x^{2}+4x-10-x^{2}+2x=-10\sqrt{x^{2}-2x-2}
Subtract 23 from 13 to get -10.
4x-10+2x=-10\sqrt{x^{2}-2x-2}
Combine x^{2} and -x^{2} to get 0.
6x-10=-10\sqrt{x^{2}-2x-2}
Combine 4x and 2x to get 6x.
\left(6x-10\right)^{2}=\left(-10\sqrt{x^{2}-2x-2}\right)^{2}
Square both sides of the equation.
36x^{2}-120x+100=\left(-10\sqrt{x^{2}-2x-2}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-10\right)^{2}.
36x^{2}-120x+100=\left(-10\right)^{2}\left(\sqrt{x^{2}-2x-2}\right)^{2}
Expand \left(-10\sqrt{x^{2}-2x-2}\right)^{2}.
36x^{2}-120x+100=100\left(\sqrt{x^{2}-2x-2}\right)^{2}
Calculate -10 to the power of 2 and get 100.
36x^{2}-120x+100=100\left(x^{2}-2x-2\right)
Calculate \sqrt{x^{2}-2x-2} to the power of 2 and get x^{2}-2x-2.
36x^{2}-120x+100=100x^{2}-200x-200
Use the distributive property to multiply 100 by x^{2}-2x-2.
36x^{2}-120x+100-100x^{2}=-200x-200
Subtract 100x^{2} from both sides.
-64x^{2}-120x+100=-200x-200
Combine 36x^{2} and -100x^{2} to get -64x^{2}.
-64x^{2}-120x+100+200x=-200
Add 200x to both sides.
-64x^{2}+80x+100=-200
Combine -120x and 200x to get 80x.
-64x^{2}+80x+100+200=0
Add 200 to both sides.
-64x^{2}+80x+300=0
Add 100 and 200 to get 300.
x=\frac{-80±\sqrt{80^{2}-4\left(-64\right)\times 300}}{2\left(-64\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -64 for a, 80 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-80±\sqrt{6400-4\left(-64\right)\times 300}}{2\left(-64\right)}
Square 80.
x=\frac{-80±\sqrt{6400+256\times 300}}{2\left(-64\right)}
Multiply -4 times -64.
x=\frac{-80±\sqrt{6400+76800}}{2\left(-64\right)}
Multiply 256 times 300.
x=\frac{-80±\sqrt{83200}}{2\left(-64\right)}
Add 6400 to 76800.
x=\frac{-80±80\sqrt{13}}{2\left(-64\right)}
Take the square root of 83200.
x=\frac{-80±80\sqrt{13}}{-128}
Multiply 2 times -64.
x=\frac{80\sqrt{13}-80}{-128}
Now solve the equation x=\frac{-80±80\sqrt{13}}{-128} when ± is plus. Add -80 to 80\sqrt{13}.
x=\frac{5-5\sqrt{13}}{8}
Divide -80+80\sqrt{13} by -128.
x=\frac{-80\sqrt{13}-80}{-128}
Now solve the equation x=\frac{-80±80\sqrt{13}}{-128} when ± is minus. Subtract 80\sqrt{13} from -80.
x=\frac{5\sqrt{13}+5}{8}
Divide -80-80\sqrt{13} by -128.
x=\frac{5-5\sqrt{13}}{8} x=\frac{5\sqrt{13}+5}{8}
The equation is now solved.
\sqrt{\left(\frac{5-5\sqrt{13}}{8}\right)^{2}+4\times \frac{5-5\sqrt{13}}{8}+13}+\sqrt{\left(\frac{5-5\sqrt{13}}{8}\right)^{2}-2\times \frac{5-5\sqrt{13}}{8}-2}=5
Substitute \frac{5-5\sqrt{13}}{8} for x in the equation \sqrt{x^{2}+4x+13}+\sqrt{x^{2}-2x-2}=5.
5=5
Simplify. The value x=\frac{5-5\sqrt{13}}{8} satisfies the equation.
\sqrt{\left(\frac{5\sqrt{13}+5}{8}\right)^{2}+4\times \frac{5\sqrt{13}+5}{8}+13}+\sqrt{\left(\frac{5\sqrt{13}+5}{8}\right)^{2}-2\times \frac{5\sqrt{13}+5}{8}-2}=5
Substitute \frac{5\sqrt{13}+5}{8} for x in the equation \sqrt{x^{2}+4x+13}+\sqrt{x^{2}-2x-2}=5.
\frac{15}{4}+\frac{3}{4}\times 13^{\frac{1}{2}}=5
Simplify. The value x=\frac{5\sqrt{13}+5}{8} does not satisfy the equation.
\sqrt{\left(\frac{5-5\sqrt{13}}{8}\right)^{2}+4\times \frac{5-5\sqrt{13}}{8}+13}+\sqrt{\left(\frac{5-5\sqrt{13}}{8}\right)^{2}-2\times \frac{5-5\sqrt{13}}{8}-2}=5
Substitute \frac{5-5\sqrt{13}}{8} for x in the equation \sqrt{x^{2}+4x+13}+\sqrt{x^{2}-2x-2}=5.
5=5
Simplify. The value x=\frac{5-5\sqrt{13}}{8} satisfies the equation.
x=\frac{5-5\sqrt{13}}{8}
Equation \sqrt{x^{2}+4x+13}=-\sqrt{x^{2}-2x-2}+5 has a unique solution.