Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x^{2}+2x+10}\right)^{2}=\left(2x\right)^{2}
Square both sides of the equation.
x^{2}+2x+10=\left(2x\right)^{2}
Calculate \sqrt{x^{2}+2x+10} to the power of 2 and get x^{2}+2x+10.
x^{2}+2x+10=2^{2}x^{2}
Expand \left(2x\right)^{2}.
x^{2}+2x+10=4x^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}+2x+10-4x^{2}=0
Subtract 4x^{2} from both sides.
-3x^{2}+2x+10=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
x=\frac{-2±\sqrt{2^{2}-4\left(-3\right)\times 10}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, 2 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-3\right)\times 10}}{2\left(-3\right)}
Square 2.
x=\frac{-2±\sqrt{4+12\times 10}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-2±\sqrt{4+120}}{2\left(-3\right)}
Multiply 12 times 10.
x=\frac{-2±\sqrt{124}}{2\left(-3\right)}
Add 4 to 120.
x=\frac{-2±2\sqrt{31}}{2\left(-3\right)}
Take the square root of 124.
x=\frac{-2±2\sqrt{31}}{-6}
Multiply 2 times -3.
x=\frac{2\sqrt{31}-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{31}}{-6} when ± is plus. Add -2 to 2\sqrt{31}.
x=\frac{1-\sqrt{31}}{3}
Divide -2+2\sqrt{31} by -6.
x=\frac{-2\sqrt{31}-2}{-6}
Now solve the equation x=\frac{-2±2\sqrt{31}}{-6} when ± is minus. Subtract 2\sqrt{31} from -2.
x=\frac{\sqrt{31}+1}{3}
Divide -2-2\sqrt{31} by -6.
x=\frac{1-\sqrt{31}}{3} x=\frac{\sqrt{31}+1}{3}
The equation is now solved.
\sqrt{\left(\frac{1-\sqrt{31}}{3}\right)^{2}+2\times \frac{1-\sqrt{31}}{3}+10}=2\times \frac{1-\sqrt{31}}{3}
Substitute \frac{1-\sqrt{31}}{3} for x in the equation \sqrt{x^{2}+2x+10}=2x.
\frac{2}{3}\times 31^{\frac{1}{2}}-\frac{2}{3}=\frac{2}{3}-\frac{2}{3}\times 31^{\frac{1}{2}}
Simplify. The value x=\frac{1-\sqrt{31}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\left(\frac{\sqrt{31}+1}{3}\right)^{2}+2\times \frac{\sqrt{31}+1}{3}+10}=2\times \frac{\sqrt{31}+1}{3}
Substitute \frac{\sqrt{31}+1}{3} for x in the equation \sqrt{x^{2}+2x+10}=2x.
\frac{2}{3}\times 31^{\frac{1}{2}}+\frac{2}{3}=\frac{2}{3}\times 31^{\frac{1}{2}}+\frac{2}{3}
Simplify. The value x=\frac{\sqrt{31}+1}{3} satisfies the equation.
x=\frac{\sqrt{31}+1}{3}
Equation \sqrt{x^{2}+2x+10}=2x has a unique solution.