Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{x+94}\right)^{2}=\left(x+12\right)^{2}
Square both sides of the equation.
x+94=\left(x+12\right)^{2}
Calculate \sqrt{x+94} to the power of 2 and get x+94.
x+94=x^{2}+24x+144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+12\right)^{2}.
x+94-x^{2}=24x+144
Subtract x^{2} from both sides.
x+94-x^{2}-24x=144
Subtract 24x from both sides.
-23x+94-x^{2}=144
Combine x and -24x to get -23x.
-23x+94-x^{2}-144=0
Subtract 144 from both sides.
-23x-50-x^{2}=0
Subtract 144 from 94 to get -50.
-x^{2}-23x-50=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-23\right)±\sqrt{\left(-23\right)^{2}-4\left(-1\right)\left(-50\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -23 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-23\right)±\sqrt{529-4\left(-1\right)\left(-50\right)}}{2\left(-1\right)}
Square -23.
x=\frac{-\left(-23\right)±\sqrt{529+4\left(-50\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-23\right)±\sqrt{529-200}}{2\left(-1\right)}
Multiply 4 times -50.
x=\frac{-\left(-23\right)±\sqrt{329}}{2\left(-1\right)}
Add 529 to -200.
x=\frac{23±\sqrt{329}}{2\left(-1\right)}
The opposite of -23 is 23.
x=\frac{23±\sqrt{329}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{329}+23}{-2}
Now solve the equation x=\frac{23±\sqrt{329}}{-2} when ± is plus. Add 23 to \sqrt{329}.
x=\frac{-\sqrt{329}-23}{2}
Divide 23+\sqrt{329} by -2.
x=\frac{23-\sqrt{329}}{-2}
Now solve the equation x=\frac{23±\sqrt{329}}{-2} when ± is minus. Subtract \sqrt{329} from 23.
x=\frac{\sqrt{329}-23}{2}
Divide 23-\sqrt{329} by -2.
x=\frac{-\sqrt{329}-23}{2} x=\frac{\sqrt{329}-23}{2}
The equation is now solved.
\sqrt{\frac{-\sqrt{329}-23}{2}+94}=\frac{-\sqrt{329}-23}{2}+12
Substitute \frac{-\sqrt{329}-23}{2} for x in the equation \sqrt{x+94}=x+12.
-\left(\frac{1}{2}-\frac{1}{2}\times 329^{\frac{1}{2}}\right)=-\frac{1}{2}\times 329^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{329}-23}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{\frac{\sqrt{329}-23}{2}+94}=\frac{\sqrt{329}-23}{2}+12
Substitute \frac{\sqrt{329}-23}{2} for x in the equation \sqrt{x+94}=x+12.
\frac{1}{2}+\frac{1}{2}\times 329^{\frac{1}{2}}=\frac{1}{2}\times 329^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{329}-23}{2} satisfies the equation.
x=\frac{\sqrt{329}-23}{2}
Equation \sqrt{x+94}=x+12 has a unique solution.