Solve for x
x=4
Graph
Share
Copied to clipboard
\left(\sqrt{x+5}+1\right)^{2}=\left(2\sqrt{x}\right)^{2}
Square both sides of the equation.
\left(\sqrt{x+5}\right)^{2}+2\sqrt{x+5}+1=\left(2\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{x+5}+1\right)^{2}.
x+5+2\sqrt{x+5}+1=\left(2\sqrt{x}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+6+2\sqrt{x+5}=\left(2\sqrt{x}\right)^{2}
Add 5 and 1 to get 6.
x+6+2\sqrt{x+5}=2^{2}\left(\sqrt{x}\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
x+6+2\sqrt{x+5}=4\left(\sqrt{x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x+6+2\sqrt{x+5}=4x
Calculate \sqrt{x} to the power of 2 and get x.
2\sqrt{x+5}=4x-\left(x+6\right)
Subtract x+6 from both sides of the equation.
2\sqrt{x+5}=4x-x-6
To find the opposite of x+6, find the opposite of each term.
2\sqrt{x+5}=3x-6
Combine 4x and -x to get 3x.
\left(2\sqrt{x+5}\right)^{2}=\left(3x-6\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{x+5}\right)^{2}=\left(3x-6\right)^{2}
Expand \left(2\sqrt{x+5}\right)^{2}.
4\left(\sqrt{x+5}\right)^{2}=\left(3x-6\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(x+5\right)=\left(3x-6\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
4x+20=\left(3x-6\right)^{2}
Use the distributive property to multiply 4 by x+5.
4x+20=9x^{2}-36x+36
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-6\right)^{2}.
4x+20-9x^{2}=-36x+36
Subtract 9x^{2} from both sides.
4x+20-9x^{2}+36x=36
Add 36x to both sides.
40x+20-9x^{2}=36
Combine 4x and 36x to get 40x.
40x+20-9x^{2}-36=0
Subtract 36 from both sides.
40x-16-9x^{2}=0
Subtract 36 from 20 to get -16.
-9x^{2}+40x-16=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=40 ab=-9\left(-16\right)=144
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx-16. To find a and b, set up a system to be solved.
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 144.
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
Calculate the sum for each pair.
a=36 b=4
The solution is the pair that gives sum 40.
\left(-9x^{2}+36x\right)+\left(4x-16\right)
Rewrite -9x^{2}+40x-16 as \left(-9x^{2}+36x\right)+\left(4x-16\right).
9x\left(-x+4\right)-4\left(-x+4\right)
Factor out 9x in the first and -4 in the second group.
\left(-x+4\right)\left(9x-4\right)
Factor out common term -x+4 by using distributive property.
x=4 x=\frac{4}{9}
To find equation solutions, solve -x+4=0 and 9x-4=0.
\sqrt{4+5}+1=2\sqrt{4}
Substitute 4 for x in the equation \sqrt{x+5}+1=2\sqrt{x}.
4=4
Simplify. The value x=4 satisfies the equation.
\sqrt{\frac{4}{9}+5}+1=2\sqrt{\frac{4}{9}}
Substitute \frac{4}{9} for x in the equation \sqrt{x+5}+1=2\sqrt{x}.
\frac{10}{3}=\frac{4}{3}
Simplify. The value x=\frac{4}{9} does not satisfy the equation.
\sqrt{4+5}+1=2\sqrt{4}
Substitute 4 for x in the equation \sqrt{x+5}+1=2\sqrt{x}.
4=4
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{x+5}+1=2\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}