Solve for x
x=-1
Graph
Share
Copied to clipboard
\sqrt{x+5}=\frac{6}{\sqrt{x+5}}-1
Subtract 1 from both sides of the equation.
\sqrt{x+5}=\frac{6}{\sqrt{x+5}}-\frac{\sqrt{x+5}}{\sqrt{x+5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\sqrt{x+5}}{\sqrt{x+5}}.
\sqrt{x+5}=\frac{6-\sqrt{x+5}}{\sqrt{x+5}}
Since \frac{6}{\sqrt{x+5}} and \frac{\sqrt{x+5}}{\sqrt{x+5}} have the same denominator, subtract them by subtracting their numerators.
\left(\sqrt{x+5}\right)^{2}=\left(\frac{6-\sqrt{x+5}}{\sqrt{x+5}}\right)^{2}
Square both sides of the equation.
x+5=\left(\frac{6-\sqrt{x+5}}{\sqrt{x+5}}\right)^{2}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5=\frac{\left(6-\sqrt{x+5}\right)^{2}}{\left(\sqrt{x+5}\right)^{2}}
To raise \frac{6-\sqrt{x+5}}{\sqrt{x+5}} to a power, raise both numerator and denominator to the power and then divide.
x+5=\frac{36-12\sqrt{x+5}+\left(\sqrt{x+5}\right)^{2}}{\left(\sqrt{x+5}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-\sqrt{x+5}\right)^{2}.
x+5=\frac{36-12\sqrt{x+5}+x+5}{\left(\sqrt{x+5}\right)^{2}}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x+5=\frac{41-12\sqrt{x+5}+x}{\left(\sqrt{x+5}\right)^{2}}
Add 36 and 5 to get 41.
x+5=\frac{41-12\sqrt{x+5}+x}{x+5}
Calculate \sqrt{x+5} to the power of 2 and get x+5.
\left(x+5\right)x+\left(x+5\right)\times 5=41-12\sqrt{x+5}+x
Multiply both sides of the equation by x+5.
\left(x+5\right)x+\left(x+5\right)\times 5-\left(41+x\right)=-12\sqrt{x+5}
Subtract 41+x from both sides of the equation.
x^{2}+5x+\left(x+5\right)\times 5-\left(41+x\right)=-12\sqrt{x+5}
Use the distributive property to multiply x+5 by x.
x^{2}+5x+5x+25-\left(41+x\right)=-12\sqrt{x+5}
Use the distributive property to multiply x+5 by 5.
x^{2}+10x+25-\left(41+x\right)=-12\sqrt{x+5}
Combine 5x and 5x to get 10x.
x^{2}+10x+25-41-x=-12\sqrt{x+5}
To find the opposite of 41+x, find the opposite of each term.
x^{2}+10x-16-x=-12\sqrt{x+5}
Subtract 41 from 25 to get -16.
x^{2}+9x-16=-12\sqrt{x+5}
Combine 10x and -x to get 9x.
\left(x^{2}+9x-16\right)^{2}=\left(-12\sqrt{x+5}\right)^{2}
Square both sides of the equation.
x^{4}+18x^{3}+49x^{2}-288x+256=\left(-12\sqrt{x+5}\right)^{2}
Square x^{2}+9x-16.
x^{4}+18x^{3}+49x^{2}-288x+256=\left(-12\right)^{2}\left(\sqrt{x+5}\right)^{2}
Expand \left(-12\sqrt{x+5}\right)^{2}.
x^{4}+18x^{3}+49x^{2}-288x+256=144\left(\sqrt{x+5}\right)^{2}
Calculate -12 to the power of 2 and get 144.
x^{4}+18x^{3}+49x^{2}-288x+256=144\left(x+5\right)
Calculate \sqrt{x+5} to the power of 2 and get x+5.
x^{4}+18x^{3}+49x^{2}-288x+256=144x+720
Use the distributive property to multiply 144 by x+5.
x^{4}+18x^{3}+49x^{2}-288x+256-144x=720
Subtract 144x from both sides.
x^{4}+18x^{3}+49x^{2}-432x+256=720
Combine -288x and -144x to get -432x.
x^{4}+18x^{3}+49x^{2}-432x+256-720=0
Subtract 720 from both sides.
x^{4}+18x^{3}+49x^{2}-432x-464=0
Subtract 720 from 256 to get -464.
±464,±232,±116,±58,±29,±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -464 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-1
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}+17x^{2}+32x-464=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}+18x^{3}+49x^{2}-432x-464 by x+1 to get x^{3}+17x^{2}+32x-464. Solve the equation where the result equals to 0.
±464,±232,±116,±58,±29,±16,±8,±4,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -464 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}+21x+116=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}+17x^{2}+32x-464 by x-4 to get x^{2}+21x+116. Solve the equation where the result equals to 0.
x=\frac{-21±\sqrt{21^{2}-4\times 1\times 116}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, 21 for b, and 116 for c in the quadratic formula.
x=\frac{-21±\sqrt{-23}}{2}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=-1 x=4
List all found solutions.
\sqrt{-1+5}+1=\frac{6}{\sqrt{-1+5}}
Substitute -1 for x in the equation \sqrt{x+5}+1=\frac{6}{\sqrt{x+5}}.
3=3
Simplify. The value x=-1 satisfies the equation.
\sqrt{4+5}+1=\frac{6}{\sqrt{4+5}}
Substitute 4 for x in the equation \sqrt{x+5}+1=\frac{6}{\sqrt{x+5}}.
4=2
Simplify. The value x=4 does not satisfy the equation.
\sqrt{-1+5}+1=\frac{6}{\sqrt{-1+5}}
Substitute -1 for x in the equation \sqrt{x+5}+1=\frac{6}{\sqrt{x+5}}.
3=3
Simplify. The value x=-1 satisfies the equation.
x=-1
Equation \sqrt{x+5}=\frac{-\sqrt{x+5}+6}{\sqrt{x+5}} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}