Solve for x
x = -\frac{23}{16} = -1\frac{7}{16} = -1.4375
Graph
Share
Copied to clipboard
\left(\sqrt{x+3}\right)^{2}=\left(4x+7\right)^{2}
Square both sides of the equation.
x+3=\left(4x+7\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=16x^{2}+56x+49
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+7\right)^{2}.
x+3-16x^{2}=56x+49
Subtract 16x^{2} from both sides.
x+3-16x^{2}-56x=49
Subtract 56x from both sides.
-55x+3-16x^{2}=49
Combine x and -56x to get -55x.
-55x+3-16x^{2}-49=0
Subtract 49 from both sides.
-55x-46-16x^{2}=0
Subtract 49 from 3 to get -46.
-16x^{2}-55x-46=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-55 ab=-16\left(-46\right)=736
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -16x^{2}+ax+bx-46. To find a and b, set up a system to be solved.
-1,-736 -2,-368 -4,-184 -8,-92 -16,-46 -23,-32
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 736.
-1-736=-737 -2-368=-370 -4-184=-188 -8-92=-100 -16-46=-62 -23-32=-55
Calculate the sum for each pair.
a=-23 b=-32
The solution is the pair that gives sum -55.
\left(-16x^{2}-23x\right)+\left(-32x-46\right)
Rewrite -16x^{2}-55x-46 as \left(-16x^{2}-23x\right)+\left(-32x-46\right).
-x\left(16x+23\right)-2\left(16x+23\right)
Factor out -x in the first and -2 in the second group.
\left(16x+23\right)\left(-x-2\right)
Factor out common term 16x+23 by using distributive property.
x=-\frac{23}{16} x=-2
To find equation solutions, solve 16x+23=0 and -x-2=0.
\sqrt{-\frac{23}{16}+3}=4\left(-\frac{23}{16}\right)+7
Substitute -\frac{23}{16} for x in the equation \sqrt{x+3}=4x+7.
\frac{5}{4}=\frac{5}{4}
Simplify. The value x=-\frac{23}{16} satisfies the equation.
\sqrt{-2+3}=4\left(-2\right)+7
Substitute -2 for x in the equation \sqrt{x+3}=4x+7.
1=-1
Simplify. The value x=-2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=-\frac{23}{16}
Equation \sqrt{x+3}=4x+7 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}