Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{x+3}=4-\frac{3}{\sqrt{x+3}}
Subtract \frac{3}{\sqrt{x+3}} from both sides of the equation.
\sqrt{x+3}=\frac{4\sqrt{x+3}}{\sqrt{x+3}}-\frac{3}{\sqrt{x+3}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 4 times \frac{\sqrt{x+3}}{\sqrt{x+3}}.
\sqrt{x+3}=\frac{4\sqrt{x+3}-3}{\sqrt{x+3}}
Since \frac{4\sqrt{x+3}}{\sqrt{x+3}} and \frac{3}{\sqrt{x+3}} have the same denominator, subtract them by subtracting their numerators.
\left(\sqrt{x+3}\right)^{2}=\left(\frac{4\sqrt{x+3}-3}{\sqrt{x+3}}\right)^{2}
Square both sides of the equation.
x+3=\left(\frac{4\sqrt{x+3}-3}{\sqrt{x+3}}\right)^{2}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=\frac{\left(4\sqrt{x+3}-3\right)^{2}}{\left(\sqrt{x+3}\right)^{2}}
To raise \frac{4\sqrt{x+3}-3}{\sqrt{x+3}} to a power, raise both numerator and denominator to the power and then divide.
x+3=\frac{16\left(\sqrt{x+3}\right)^{2}-24\sqrt{x+3}+9}{\left(\sqrt{x+3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4\sqrt{x+3}-3\right)^{2}.
x+3=\frac{16\left(x+3\right)-24\sqrt{x+3}+9}{\left(\sqrt{x+3}\right)^{2}}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x+3=\frac{16x+48-24\sqrt{x+3}+9}{\left(\sqrt{x+3}\right)^{2}}
Use the distributive property to multiply 16 by x+3.
x+3=\frac{16x+57-24\sqrt{x+3}}{\left(\sqrt{x+3}\right)^{2}}
Add 48 and 9 to get 57.
x+3=\frac{16x+57-24\sqrt{x+3}}{x+3}
Calculate \sqrt{x+3} to the power of 2 and get x+3.
\left(x+3\right)x+\left(x+3\right)\times 3=16x+57-24\sqrt{x+3}
Multiply both sides of the equation by x+3.
\left(x+3\right)x+\left(x+3\right)\times 3-\left(16x+57\right)=-24\sqrt{x+3}
Subtract 16x+57 from both sides of the equation.
x^{2}+3x+\left(x+3\right)\times 3-\left(16x+57\right)=-24\sqrt{x+3}
Use the distributive property to multiply x+3 by x.
x^{2}+3x+3x+9-\left(16x+57\right)=-24\sqrt{x+3}
Use the distributive property to multiply x+3 by 3.
x^{2}+6x+9-\left(16x+57\right)=-24\sqrt{x+3}
Combine 3x and 3x to get 6x.
x^{2}+6x+9-16x-57=-24\sqrt{x+3}
To find the opposite of 16x+57, find the opposite of each term.
x^{2}-10x+9-57=-24\sqrt{x+3}
Combine 6x and -16x to get -10x.
x^{2}-10x-48=-24\sqrt{x+3}
Subtract 57 from 9 to get -48.
\left(x^{2}-10x-48\right)^{2}=\left(-24\sqrt{x+3}\right)^{2}
Square both sides of the equation.
x^{4}-20x^{3}+4x^{2}+960x+2304=\left(-24\sqrt{x+3}\right)^{2}
Square x^{2}-10x-48.
x^{4}-20x^{3}+4x^{2}+960x+2304=\left(-24\right)^{2}\left(\sqrt{x+3}\right)^{2}
Expand \left(-24\sqrt{x+3}\right)^{2}.
x^{4}-20x^{3}+4x^{2}+960x+2304=576\left(\sqrt{x+3}\right)^{2}
Calculate -24 to the power of 2 and get 576.
x^{4}-20x^{3}+4x^{2}+960x+2304=576\left(x+3\right)
Calculate \sqrt{x+3} to the power of 2 and get x+3.
x^{4}-20x^{3}+4x^{2}+960x+2304=576x+1728
Use the distributive property to multiply 576 by x+3.
x^{4}-20x^{3}+4x^{2}+960x+2304-576x=1728
Subtract 576x from both sides.
x^{4}-20x^{3}+4x^{2}+384x+2304=1728
Combine 960x and -576x to get 384x.
x^{4}-20x^{3}+4x^{2}+384x+2304-1728=0
Subtract 1728 from both sides.
x^{4}-20x^{3}+4x^{2}+384x+576=0
Subtract 1728 from 2304 to get 576.
±576,±288,±192,±144,±96,±72,±64,±48,±36,±32,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 576 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=-2
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{3}-22x^{2}+48x+288=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{4}-20x^{3}+4x^{2}+384x+576 by x+2 to get x^{3}-22x^{2}+48x+288. Solve the equation where the result equals to 0.
±288,±144,±96,±72,±48,±36,±32,±24,±18,±16,±12,±9,±8,±6,±4,±3,±2,±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 288 and q divides the leading coefficient 1. List all candidates \frac{p}{q}.
x=6
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-16x-48=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide x^{3}-22x^{2}+48x+288 by x-6 to get x^{2}-16x-48. Solve the equation where the result equals to 0.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 1\left(-48\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -16 for b, and -48 for c in the quadratic formula.
x=\frac{16±8\sqrt{7}}{2}
Do the calculations.
x=8-4\sqrt{7} x=4\sqrt{7}+8
Solve the equation x^{2}-16x-48=0 when ± is plus and when ± is minus.
x=-2 x=6 x=8-4\sqrt{7} x=4\sqrt{7}+8
List all found solutions.
\sqrt{-2+3}+\frac{3}{\sqrt{-2+3}}=4
Substitute -2 for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
4=4
Simplify. The value x=-2 satisfies the equation.
\sqrt{6+3}+\frac{3}{\sqrt{6+3}}=4
Substitute 6 for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
4=4
Simplify. The value x=6 satisfies the equation.
\sqrt{8-4\sqrt{7}+3}+\frac{3}{\sqrt{8-4\sqrt{7}+3}}=4
Substitute 8-4\sqrt{7} for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
2\times 7^{\frac{1}{2}}=4
Simplify. The value x=8-4\sqrt{7} does not satisfy the equation.
\sqrt{4\sqrt{7}+8+3}+\frac{3}{\sqrt{4\sqrt{7}+8+3}}=4
Substitute 4\sqrt{7}+8 for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
2\times 7^{\frac{1}{2}}=4
Simplify. The value x=4\sqrt{7}+8 does not satisfy the equation.
\sqrt{-2+3}+\frac{3}{\sqrt{-2+3}}=4
Substitute -2 for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
4=4
Simplify. The value x=-2 satisfies the equation.
\sqrt{6+3}+\frac{3}{\sqrt{6+3}}=4
Substitute 6 for x in the equation \sqrt{x+3}+\frac{3}{\sqrt{x+3}}=4.
4=4
Simplify. The value x=6 satisfies the equation.
x=-2 x=6
List all solutions of \sqrt{x+3}=\frac{4\sqrt{x+3}-3}{\sqrt{x+3}}.